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1 Some matrix calculus

For an m x n matrix A we denote by A’ its transpose n x m matrix. Unless stated otherwise
vectors a = (aq,...,an)" are assumed to be column vectors. If A and B are two matrices
such that their product AB is well defined, then the transpose of AB is B'A’, i.e., (AB) =
B’'A’. Trace of a square m x m matrix A is defined as the sum of its diagonal elements, i.e.,
tr(A) = a11 + ... + Gmm- 1t has the following important property. Let A and B be two matrices
such that their product AB is well defined. Then

tr(AB) = tr(BA). (1.1)

/

In particular, if a = (ay, ..., a;,)" is an m x 1 vector, then aa’ is an m x m matrix, its trace

tr(aa’) = > 1" a? = d'a.

Let A be an m xm matrix. We denote by | A| the determinant of A. Matrix A is nonsingular
(invertible) if and only if (iff) |A| # 0. It is said that A is an eigenvalue of A if there is an m x 1
vector e # 0 such that Ae = le. It follows that (A — AI,,)e = 0, where I,, is the m x m
identity matrix. Thus matrix (A — AI,,) is singular, and hence its determinant |A — \I,,| = 0.
Consider! p()\) := |A — AI,,|. This is a polynomial of degree m and hence has m roots which are
eigenvalues of matrix A. Therefore matrix A has m eigenvalues some of which can be complex
numbers. Suppose now that matrix A is symmetric, i.e., A’ = A. Then it has m real valued

eigenvalues A\; > --- > A\, and a corresponding set of eigenvectors ey, ..., €,, such that
Aei = )\ie,-, 1= 1, ey . (1.2)

The eigenvectors can be chosen in such a way that eje; = 0 for i # j and eje; = 1 fori =1,...,m,
i.e., these eigenvectors are orthogonal to each other and of length one. In that case we say the
eigenvectors are orthonormal.

Consider the m x m matrix T = [ey, ..., ;] whose columns are formed from a set of or-
thonormal eigenvectors. Matrix T has the following property T'T = I, and TT' = I,,,. Such
matrices are called orthogonal. Equations (1.2) can be written in the form AT = TA, where
A = diag(A1, ..., Ap) is the diagonal matrix. By multiplying both sides of this matrix equation
by T’ we obtain

A=TAT = Xee]. (1.3)
=1

The representation (1.3) is called spectral decomposition of matrix A. It also follows that
T'AT = A, and that tr(A) = tr(A) = A\ + -+ 4+ A, and A7 = TA7IT’, provided that
all \; 20,i=1,...,m.

It is said that matrix A is positive semidefinite if *' Az > 0 for any £ € R™, and it is said
that A is positive definite if ' Az > 0 for any « # 0. By using (1.3) we can write

m
T Ax = 'TAT 'z = y'Ay = Z /\iy1'27
i=1

where y = T'x. Note that y'y = 'TT 'z = x'x. It follows that matrix A is positive semidefinite
iff all its eigenvalues are nonnegative, and is positive definite iff all its eigenvalues are positive.

We can define a function of symmetric matrix A by considering a function of its eigen-
values. For example if matrix A is positive semidefinite and hence all its eigenvalues are

)

!Sometimes we write ‘:=’ meaning ‘equal by definition’.



nonnegative we can define AY?2 = TAYV2T' where AY? = diag(Ai/z,...,/\%Q). The so de-
fined matrix A'/? is symmetric positive semidefinite and (A1/2)2 = TA'PT'TAV?T = A,
since T'T = I,,. Similarly if A is positive definite and hence all its eigenvalues are pos-
itive, we can define A~Y/2 = TA~Y2T'. Matrix A~'/? is symmetric positive definite and
(A_1/2)2 _ TA—I/QT/TA—I/QT/ — AL

Let A and B be two m x m symmetric matrices. Then (AB)" = BA, so the product
matrix is not symmetric unless AB = BA. Suppose that A is positive semidefinite, then
matrix AY/2BAY? is symmetric. Let e be an eigenvector and A the corresponding eigenvalue of
AYV2ZBAY? e, AV2BAY?e = )e. Multiplying both sides of this equation by A2 we obtain
ABAY?e = \A'?e. That is, A/?e is the corresponding eigenvector and A is the eigenvalue
of matrix AB. This shows that although AB is not symmetric, it has real valued eigenvectors
and eigenvalues. Moreover, if B is positive semidefinite, then A2BAY? g positive semidefinite
and hence all eigenvalues of AB are nonnegative, and if both A and B are positive definite
matrices, then A'/2B A2 is positive definite and hence all eigenvalues of AB are positive.

Random vectors. Consider an m x 1 random vector X = (X1, ..., X;,)". Its expected value
p = E[X] is defined as E[X| = (E[X1], ..., E[X,,,])’, i.e., the expectation is taken componentwise.
Similarly expectation of a random matrix is taken componentwise. Sometimes we write py to
emphasize that this is mean vector of X. The m X m covariance matrix of X is

S = E[(X — p)(X — )] = E[XX'] — .

The (4, j)-component of 3 is the covariance Cov(X;, Xj), 4,5 = 1,...,m.
Covariance matrix ¥ has the following properties. It is symmetric, i.e., ¥’ = 3. Consider a
(deterministic) k x m matrix A and k x 1 random vector Y = AX. Then

py = E[Y] = E[AX] = AE[X] = Ap,.

In particular, if Kk = 1 and ¥ = a'X = a1 X1 + ... + a;n Xy, where a = (ay, ..., ay,)’, then
E[Y] = a'pux. Now

Sy = EIYY'] — iy sty = BAX XA~ Apy sy A"
Since E[AX X'A'] = AE[X X']| A it follows that
Sy = AN A (1.4)

In particular, if A =a’ = (ay,...,a,)" is a row vector, then

m
Var(a’X) = a'Xa = Z 0ija;a;, (1.5)
ij=1

where 0;; = Cov(X;, X;) is the (4, j)-component of covariance matrix 3 = 3 x. Since variance
of a random variable is always nonnegative, it follows that a’Xa > 0 for any m x 1 vector a.
Therefore covariance matrix X is positive semidefinite. If moreover X is nonsingular (invertible),
then it is positive definite.

Recall that matrix X is positive definite iff a’3Xa > 0 for all @ # 0. If a’3a = 0 for some
a # 0, then this means that Var(a’X) = 0 and hence Y = a’ X is constant. In turn this means
that random variables X1 — u1, ..., X;n — iy, are linearly dependent. Therefore 3 is positive



definite iff variables X7 — pq, ..., X;n — py, are linearly independent.

As an example let us compute expectation of X' AX = E?fj:l a;; X; X, where A is an m xm
matrix. Note that using property (1.1) we can write X’AX = tr(X'AX) = tr(AX X’). Also
Etr(AX X')] = tr(E[AX X’] and hence

E[X'AX] = tr(AE[X X']) = tr(A(Z + pp')) = tr(AX) + tr(App’) = tr(AX) + p'Ap. (1.6)

2 Multivariate normal distribution

Recall that a random variable X has normal distribution with mean x and variance o2, denoted
X ~ N (u,0?), if its probability density function (pdf) is

1 _@w?
(& 202

fz) =

2wo

Now let X1, ..., X,, be an iid sequence? of standard normal variables, i.e., X; ~ N(0,1),
i =1,...,m, and these random variables are independent of each other. Then the pdf of random
vector X = (X1, ..., Xpn) 18

ﬁ 1 71%+...+z,2n
2 — -5

1 /
= 7(27T)m/26 2 = CRE exp(—x'x/2).

1
x) = —c
Consider Y = AX, where A is an m X m nonsingular matrix. Note that X = A~'Y. Then
the pdf of Y is

1

W exp(—y’E;/ly/2).

exp(—y' AT ATy /2) = &

1
fr(y)=fx (A ly) A7 = (@r)2[a|
Recall that |A| denotes determinant of (square) matrix A. We used the following properties
in the above derivations: |A~!| = |A|7!, A1TA™! = (AA)"!, and By = AZ A’ = AA
since ¥y = I, is the identity matrix, |Ey| = |AA’| = |A||A/| = |A|%2. Note also that
E[Y] = Aux =0.

Finally consider Y = AX + . The pdf of this random vector is

1

Wexp{ —(y— )= (y - p)/2}. (2.1)

fy(y) = (2r

If random vector Y has pdf of the form (2.1), where ¥ is a symmetric positive definite matrix,

then it is said that Y has multivariate normal distribution, denoted Y ~ N (u, X). Sometimes

we write this as NV, (u, X) to emphasize dimension m of random vector Y. Note that p is the
m X 1 mean vector and X is the m x m covariance matrix of Y.

. " e

Suppose that X ~ N, (u, X) is partitioned X = Xl

2

of X of the respective dimensions m; x 1 and mg x 1, with m; + mo = m. The corresponding

ce . 5 »
partitioning of p = [ #1 } and 3 = [ 11 212
K2 321 X2

] , where X1 and X are subvectors

} . Note that Xo; = ¥/, since X is symmetric.

2A sequence X1, ..., X, of random variables is said to be iid (independent identically distributed), if these
random variables are independent of each other and have the same probability distribution.



Suppose further that 315 = 0 and hence 391 = ¥}, = 0, i.e., matrix ¥ is block diagonal. Then
—1
13| = |211|[Zg2| and B = [ 11 0_1 ], and hence
0 =55

Ifx(@) = fx, (z1) fx,(22),

where fx(-) is the pdf of X and fx,(-) and fx,(-) are pdfs of X; and X9, respectively. It follows
that random vectors X1 and X are independent. That is, for multivariate normal distribution
“independent” and “uncorrelated” are equivalent.

Moment generating function of a random variable X is defined as M(t) := E[eX]. Since
U =1, it follows that M(0) = 1. Note that it can happen that M(t) = +oo for any ¢ # 0.
Two random variables X and Y have the same distribution if their moment generating functions
Mx (t) and My (t) are equal to each other for all ¢ in some neighborhood of zero, provided these
moment generating functions are finite valued in that neighborhood.

Similarly moment generating function of a random vector X = (X7, ..., X;;,)" is defined as

M (t) := E[e"*1 - HmXm] = Elexp(t' X))

If Mx(t) is finite valued in a neighborhood of 0 € R™, then it is differentiable in that neigh-
borhood. Consider m x 1 vector IMx (t)/0t = (OMx(t)/0t1,...,0Mx(t)/Oty,)" of first order
partial derivatives, and m x m matrix of second order?® partial derivatives 92 Mx (t)/0tot’ with
(i,7) - element 9> Mx (t)/0t;0t;, 3,5 = 1,...,m. Then the expectation and differentiation opera-
tions can be interchanged (see Remark 8.1) and

OMx(t)/0t|,_, = E[dexp(t'X)/0t|,_,| = E[ X exp(t'X)|,_,] = E[X].
Similarly the Hessian matrix
0*Mx (t)/otot'|,_, = E[ X X'].

Let us compute the moment generating function of X ~ A (u, X). For standard normal
random variable X ~ N(0,1) we have

M(2) /+OO tx —x2/2d / (x—t)2/2 t2/2dl, t2/2 1 /+ —x2/2d t2/2
\/ V2T V21 J—xo

Let X ~ N(0,1I,,) and hence components X; ~ N(0,1) of X are independent. Thus
M(t) = E[eltXit-HtmXm] — ehX1 .y glmXm] — H Het /2 = exp(t't)2).
i=1

Consider now Y = AX + p. Since X ~ N(0,1I,,) we have that E[Y] = p and the covariance
matrix of Y is ¥ = AA’. Then

My() = Elexp(E(AX + )] = Elexp(t ) exp(t' AX)] = explt/p)Elexp((A'8) X))
= exp(t'u)Mx(A't) = exp(t'p) exp(t AA't/2) = exp(t'n + '3t/2).

That is, for Y ~ N, (p, X) its moment generating function is finite valued for any m x 1 vector
t, and
My (t) = exp(t'p + t'3t/2). (2.2)

3Matrix of second order partial derivatives is called Hessian matrix.



Now let X ~ Np(p,Xx) and Y = AX + n, where A is a k x m matrix and n is k x 1
vector. Then

My (t) = exp(t'(AX +n)) = exp(t'n)Mx (A't) = exp(t' (Ap +n)) exp(t AL A't/2).

That is, the moment generating function of Y is the same as the moment generating function
of multivariate normal with mean AX + n and covariance matrix AX A’. Tt follows that Y has
multivariate normal distribution with mean gy = Ap +n and covariance matrix Xy = AX A’
In particular, marginal distribution of every subvector of X is multivariate normal.

A delicate point of the above result is that the covariance matrix AX A’ of Y should be non-
singular, i.e. positive definite, in order for its density function fy (y) to be well defined. Since the
covariance matrix X of X is positive definite, the matrix AX x A’ is nonsingular iff the k x m ma-
trix A has rank k. For example, if & > m, then rank(A) < m < k and hence AX x A’ is singular.

It follows that random vector X has multivariate normal distribution iff Y = a’X is normally
distributed for any vector a # 0. Indeed, if X has normal distribution, then as it was shown
above a’ X is normally distributed. Conversely, suppose that @’ X is normally distributed for
any a # 0. Consider Y := ¢/ X for t # 0. We have that uy =t uy and o = t/Sxt. Moreover
since Y has normal distribution its moment generating function My () = exp(uyt +o3t?/2). It
follows that

My (t) = Elexp(t'X)] = My (1) = exp(py + 0%/2) = exp( iy + ¢S xt/2).

That is, the moment generating function of X has the form of normal distribution (see equation
(2.2)). It follows that X has normal distribution. O

Conditional normal distribution. Suppose that X ~ N, (u, X) is partitioned X = il ]
2

311 %12

with the corresponding partitioning of pu = Ll and 3 =
) 321 322

} . We want to compute
the conditional distribution of X given X9 = x5. Consider

_ _ X
Y = X1 — 2122221X2 = [Iml, —2122221] |: X; :| .

. c . X
Note that vector (Y, X%)" has multivariate normal distribution. Moreover X = [0, I,y,, ] [ Xl ]
2

and

_ _ —17 | 211 12 0 _ _ el L
CovlY, Xo| = [Im,, —%1255, ] { 91 oo ] [ I, ] = [Im,, —S1235; | { S } = 0.

It follows that Y and X9 are uncorrelated and hence independent. Since X1 =Y + 2122521X 9
it follows that the conditional distribution of X1 given X9 = x5 is the same as the distribution
of Y + 21222_21m2. Now Y has multivariate normal distribution with mean

E[Y] = p — S1255 1y
and covariance matrix

211 12 ] [ I,

-1
1 = Y11 — M1235, Yoy
391 322 —399 X921 } =

Sy = [Ty, —=1255,) [

7



That is the conditional distribution of X1 given X9 = @5 is multivariate normal
Ny (11 4 Z12355 (w9 — 1), Bi1 — B12%5, D) - (2.3)

Note that the conditional covariance matrix 11 — X129 22_21221 is given by the Schur complement
of ¥ (see equation (2.5) below).

Chi-square, t and F distributions. There are three important distributions derived from
the normal distribution. Note that if X ~ AN(0,1), then E[X?] = Var(X) = 1 and, using
integration by parts,

1 +o0 +00
E[X"] = 2/ wle " 2y = \/?;7/ 22e 2y = 3Var(X) = 3. (2.4)
T J—o0 T J—c0

Hence Var(X?) = E[X?4] -1 =2.

Let Z1, ..., Z,, be an iid sequence of standard normal random variables. Then Y := Z12 +...+
Zrzn has chi-square distribution with m degrees of freedom, denoted Y ~ x%n. The expected value
of Vis E[Y] = E[Z}]+...+E[Z2] = m and variance Var(Y) = Var(Z?)+...+ Var(Z2) = 2m. By
the Law of Large Numbers, Y/m tends in probability to 1, and by the Central Limit Theorem,
m~/2(Y —m) tends in distribution to normal N(0,2), as m — cc.

The ¢ distribution with m degrees of freedom is defined as distribution of T = —Z

VW/m

Z ~ N(0,1) and W ~ x2, are independent random variables, denoted T’ ~ t,,. Since for large
m, W/m becomes close to one, critical values of t-statistic are close to the respective standard
normal critical values when the degrees of freedom are large.

The F' distribution with k& and m degrees of freedom is defined as distribution of F' = m‘;—;fn,

where V' ~ X% and W ~ x2, are independent random variables, denoted F ~ F . It follows
from the above definitions that if T' ~ t,,,, then T2 ~ Fi .

, where

2.1 Schur complement

Consider (n +m) x (n +m) matrix

wo[a 8]

C D

where A, B, C, D are matrices of respective dimensions n X n, n X m, m X n, m X m. Suppose
that D is invertible (nonsingular). Then

e ]l e [T B e

0 I, C D D'Cc 1, 0 D

The matrix A — BD~!C is called the Schur complement of M with respect to D.
Note that
I, -BD'1"' [1I, BD!
i A

and

I, o1' [ I, o0
-p'c 1,,|] ~|D'C I,|



and determinants of these matrices equal one. Hence it follows from (2.5) that

A B] [I, BD'][A-BD'C o I, o
C D| |0 I, 0 D || D'C I, |

This implies the following formula for the determinant of matrix M,
|M|=|A—-BD'C||D|. (2.6)

Also it follows that matrix M is invertible iff the matrix A — BD™C is invertible (recall that
it is assumed that D is invertible), in which case

A B] ' I, 0 (A—BD'C)"' o I, —BD!
C D | =D 'C I, 0 D! 0 I, '

Using the above equation it is possible to compute

A B (A—BD'C)! —(A-BD'C)"'BD™! @)
c D| ~ | -D'C(A-BD'C)"! D'+D'C(A-BD'C)'BD"' | \*

3 Quadratic forms

In this section we discuss distribution of quadratic forms Q = X’ AX, where X ~ N, (p, ) and
A is an m x m symmetric (deterministic) matrix. Recall that the expected value of X’ AX was
computed in equation (1.6). Let us first consider simple case where A = I,;, and X ~ N(0, I,;,).
Then Q = X? + ... + X2, has chi-square distribution with m degrees of freedom, Q ~ x2,.

Theorem 3.1 Let X ~ N;,(0,%). Then X'E7'X ~ x2,.

Proof. Consider spectral decomposition ¥ = T AT’ of the covariance matrix X, and random
vector Y = X71/2X | where £71/2 = TA~Y/2T". Note that E[Y] = 0, the covariance matrix of
Y is 272822 =1, and Y ~ N(0,1,,). Moreover

Y'Y =X'2V2x12x - x'ss1x.
Hence X'S7!X = Y2+ .. +Y2 ~ 2, O

An m x m matrix P is said to be idempotent or projection matrix if P? = P. All eigenvalues
of a projection matrix are either 1 or 0. Indeed if A is an eigenvalue of P and e the corresponding
eigenvector, then P2e = P(Pe) = A2e. On the other hand since P? = P, P?e = \e. It follows
that A2 = ), and hence A =1 or A = 0.

Moreover, suppose that P is symmetric. Then for any € R™,

(x — Px) Px = ' Px — ' P'Px = ' Px — ' P’z = 0.

That is, P makes orthogonal projection of vector & onto the linear space {y : y = Pz, € R™}.

Also by the spectral decomposition, P = T1T", where T; is the m X r matrix whose
columns are orthonormal eigenvectors corresponding to eigenvalues 1, i.e., T)T7 = I.. Then
rank(P) = r = tr(P).

Theorem 3.2 Let X ~ N,;,,(0,1,,) and P be symmetric projection matriz of rank r. Then
X'PX ~ x2.



Proof. Consider spectral decomposition P = T1T". Then X'PX = X'TWT\X = Z'Z,
where Z = T/ X. We have that the r x 1 vector Z has normal distribution with zero mean
vector and covariance matrix T)T1 = I,.. It follows that X' PX ~ x2. d

Noncentral chi square distribution.

Let X ~ Ny (p, I,) and consider Q = X' X = X7 +...+ X2, Note that if Y = T X, where T is
an orthogonal matrix, then Y'Y = X’X and E[Y] = T'u, and the covariance matrix of Y is I,,.
It follows that the distribution of @ depends on § = u? + ... + p2, rather than individual values
of the components of the mean vector . Distribution of @ is called noncentral chi square with
the noncentrality parameter § = p? + ... + 2, and m degrees of freedom, denoted Q ~ x2,(6).
Similar to Theorems 3.1 and 3.2 it is possible to show the following.

Theorem 3.3 If X ~ Np(u,X), then X'S™1X ~ x2,(8) with the noncentrality parameter
§=pE"tu. If X ~ Ny(p, I,,) and P is symmetric projection matriz of rank r, then X' PX ~
X2(68), where 6 = p'Pp.

4 Statistical inference of linear models
Consider linear regression model
Yi = Bo+ Brwi1 + .0k + €55 i =1,..., N. (4.1)

Denote by Y = (Y1,...,Yn)" vector of responses, X; = (z1;,....,xn;)', j = 1,..., k, predictors
(regressors), € = (1,...,en)" vector of errors and 1y = (1,...,1)" vector of ones. Then we can
write model (4.1) as Y = Boly + 1 X1 + ... + B X + €, or equivalently in matrix form as

Y = X3 +c¢, (4.2)

where 8 = (Bo, 51, .., Bk)" is vector of parameters and X = [1x, X1,..., Xk is N xp,p=k+1,
so called design matrix. Note that the first column of X is formed by ones. Unless stated
otherwise, it will be assumed that X has full column rank p, i.e., column vectors 1y, X1, ..., X
of the design matrix are linearly independent.

Note that the design matrix X is assumed to be deterministic. This is justified when values
x;; of the predictors (regressors) are observed without error. If x;; are modelled as random, the
analysis below can be pushed through by conditional arguments.

The Least Squares Estimator (LSE) 3 of 8 is solution of the problem

min(Y — XB)'(Y ~ X8). (4.3)

By Pythagoras Theorem vector of residuals e = Y — X3 is orthogonal to the linear space
generated by columns of the design matrix X. That is €’ X = 0 or equivalently X'(Y — X ﬁ) =0.
It follows that (X’X)3 = X'Y. Since it is assumed that matrix X has full column rank, the pxp
matrix X’X is nonsingular (invertible). Thus the LSE can be written as 8 = (X' X)"'X'Y.
Suppose that E[e] = 0. Then (recall that the design matrix X is assumed to be deterministic)

E[8] = (X'X)'X'E]Y] = (X'X) ' X'E[XB8+¢] = (X'X)"' X' (X8 +Ele]) = 8.

That is, 8 is an unbiased estimator of 3. A
Consider the N x N matrix H := X (X'X)~!X’. Note that vector Y = X3 of fitted values
is given by Y = HY, and vector of residuals e =Y —Y is given by e = (Iny — H)Y. Matrix H

10



is the orthogonal projection matrix onto the space generated by columns of X, i.e., HY = X3
and X'(Y — HY ) = 0; and matrix Iy — H is the orthogonal projection matrix onto the space
orthogonal to the space generated by columns of X.

Matrix H has the following properties:

(i) H is symmetric.

(ii) H and Iy — H are idempotent (projection) matrices, i.e. H?> = H and (I, — H)?> =
Iy—H.

(iii) tr(H) =pand tr(Iy — H) = N —p.
(iv) HX = X and (Iy — H)X = 0.

Suppose that the errors g;, are uncorrelated, E(g;) = 0 and Var(e;) = 02, i = 1, ..., N, that
is, Cov(Y) = Cov(e) = 02T . Then the covariance matrix of 8 can be computed as

Cov(B) = (X'X) ' X' [Cov(Y)| X (X'X) ' = o (X'X) ' X'X(X'X) ! = (X' X)L
It also follows that the covariance matrix of e is
Cov(e) = Cov[(Ixy — H)Y| = o*(Iy — H)? = ¢*(Ixy — H).
Moreover Ele] = (Iny — H)E[Y] = (In — H)XB = 0 and hence

N N
E [e% + .o+ e?v] = ZE[@?] = ZVar(ei) = o?tr(Iy — H) = o*(N — p).
i=1 i=1

That is,

2._ _1 N 2
5% = N—p D im1 €

is an unbiased estimator of o2.

Since the first column of X is vector 1y = (1,...,1)" of ones and €' X = 0, it follows that
€1y =0, that is 32  e; = 0. In a similar way we have €'Y = Y'(Iy — H)HY = 0. That is,
residuals e and fitted values Y are uncorrelated.

Consider Y = N~} Zf\il Y;. Since Zfil e; = 0 we have that Y = N1 Zﬁl Y; as well. Note
that

N N
YE-VWi-Y) =) (Vi-YV)e=€Y -V > e =0,
i=1 i=1 i=1

and hence

That is
Syy = SSgr+ SSEg, (4.4)
where
N N N
Syy = (Y;=Y)? SSg:=) (Yi-Y)? SSp:=> ¢ (4.5)
i=1 i=1 i=1

11



The so-called coefficient of determination is defined as

R2 . Syy 1 SSE

SSr SSr

It is interpreted as proportion of the total variation Syy (corrected for the average) explained by
variation SSg due to regression. Another interpretation is that R? = 72, where r is the sample
correlation coefficient between Y; and Y;. Indeed

N N N
YW -VYi-Y)=) Gi-YV)Yi-Yi+Yi-Y)=) (V;i-Y),
=1 =1 =1
and hence
~ _ _ 2 N O v\ 2 2 ~ _
2 S (= V)Y - Y) __[Zhe-vy N (- ¥

VI G-y e -y DL YREL Y-V N -

In case of one predlctor ie, Y;=pPo+ BX;+¢€i, i =1,.., N, the sample correlation between Y;
and Y; = Bg + BX is the same as the sample correlatlon between Y,and X;,7=1,...,N.

Theorem 4.1 (Gauss - Markov) Suppose that E[e] = 0 and Cov[e] = o*Ix. Then the LSE
B is the Best Linear Unbiased Estimator (BLUE) of 8. That is, if 3 = A'Y is a linear unbiased
estimator of B (i.e., E[B] = B for all B), then

Var(a'B) > Var(a'3) (4.6)
for any p x 1 vector a.

Proof. Since E[3] = 3 for all 3, it follows that 3 = A'E[Y] = A’X3. Hence (I,—A’X)3 =
0 for all 3, and thus A’X = I,. Consider matrix B = A — X(X'X)"!. Note that since
X'A =1, it follows that

(X'X)'X'B=(X'X)"'X'(A-X(X'X)") =0,

and hence X'B = 0.
Now since covariance matrix of Y is 021y it follows that

Var(a'B) = Var(a’A'Y) = ¢%d’ A’ Aa.
Also since X’B = 0 we have that
AA=(X'X)"H)X'X(X'X)"'+BB=(X'X)"'+BB.

Hence
Var(a'B) = 0%d'(X'X) 'a + 0?a’ B'Ba = Var(a'8) + 0°a’ B' Ba.

It remains to note that '’ B'Ba = (Ba)'Ba > 0. O
The LSE 3 is the solution of the system of linear equations (X'X)B = X'Y. It can happen
that small changes in values of the design matrix X result in big changes in the solution of that

system of equations. In numerical analysis such problems are called ill-conditioned. In regression
this is called multicollinearity problem, when columns of the design matrix are ‘almost’ linearly

12



dependent. Il conditioning of a system of linear equations is measured by the so-called condition
number (see below).

In regression the multicollinearity problem is measured by the so-called Variance Inflation
Factor, VIF;, which is a measure of collinearity of regressor (predictor) X; with the other
regressors, ¢ = 1,...,k. It is defined as VIF; := 1/(1 — RZ), where R? is the coefficient of
determination of regression X; on the other regressors. Let X = [X1,..., X;] be the N x k
normalized design matrix, i.e., the averages are removed from each regressor so the sum of
elements of each regressor X, is zero, and all diagonal elements of k x k matrix R := X'X are
equal to one, i.e., the sum of squared elements of each regressor X; is equal to one.

T12
ro1 R
have that the first diagonal element of matrix R™! is equal to (1 — 7’12R11 r91) 1. Consider
now regression of the first regressor X1 on the other regressors Xo, ..., Xj. The corresponding
coefficient of determination R% is equal to 7‘12R11 r91. This can be applied to regression of every
X; on the other regressors. Therefore Variance Inflation Factors can be obtained as diagonal
elements of the matrix R,

Consider the following partitioning { ] of matrix R. Then by equation (2.7) we

Condition number.

Consider the system of linear equations Ax = b, where A is a nonsingular n X n matrix
(not necessarily symmetric) and b is an n x 1 nonzero vector. It has solution xg = A~ 'b.
Consider perturbed system Ax = b+ ¢, where € is a “small” vector of errors. This system
has solution &, = xo + A 'e. Consider the following ratio of the relative error in the
solution to the relative error in b

IA” el /o]l _ [IA" el [IBll

lell/1l0l] ERr S

The following maximum is called the conditional number of A:

._ A e bl _ |A e Ib|
cond(A) = B, TTET X AT (I?% rem ) oo 1A7'0) )

Now let omin(A) = v/ Amin(A’A) and opmax(A) = \/Amax(A’A) be the minimal and maxi-
mal singular values of A (see section 15.4). Then

Al 1
maxu = max /e/(A’A)"le = ——|
ez0 ||| lefl=1 Omin(A)

and

el |Az|

ax ——— = max
b;éO |A~'D|  z#0 |z||

Therefore cond(A) = omax(A)/omin(A).
If matrix A is symmetric positive definite, then opax(A) and opin(A) are the largest and
smallest eigenvalues of A, respectively. For matrix A = ~vI,,, v # 0, its condition number
cond(vI,) = 1. Otherwise the condition number is bigger than one.

= Omax(A).

4.1 Distribution theory

Suppose now that € ~ N(0,02Iy) and hence Y ~ N (X3,0%Iy). It follows that the LSE 3
has normal distribution N'(8,0%(X’X)~!). Hence it follows by Theorem 3.1 that

2(B-8)X'X(B-8)~ x>, (4.7)

13



where p = k + 1. Recall that S? = (N — p)~'€’e is an unbiased estimator of o2.
SinceY = XpB+eand Iy —H)X =0,

(N-p)S? ee Y'(Iy-H?Y Y'(Iy-H)Y ¢&(Iy—H)e
2 = = 2 = 2 = 2 :

g (o g g

Recall that In — H is a projection matrix. Its rank
rank(Iy — H) = tr(Iy — H)=tr(Iy) —tr(H) = N — tr(X(X'X)"1X")
= N-tr((X'X)"'X'X)=N —p.

By Theorem 3.2 it follows that
(N —p)S?
2

2
- ~ Xy (4.8)

Moreover
Covle, 8] = (Iy — H)Cov(Y)X (X'X) ™ = 0*(Iy - H)X(X'X) ' = 0.

Hence e and B are independent. It follows that S? and B are independent, and hence S? and
c72(B8—B)X'X (B — B) are independent. It follows that

(8- ﬁ)’X:g(ﬂ =B g (4.9)

This can be used to construct the following (1 — «)-confidence region for 3:
{B : (/é - ﬂ),X/X(B - ﬁ) < pSZFa;p,pr}-

Now consider Syy, SSgr and SSg and recall that Syy = SSgr + SSE (see equation (4.4)).
Also
(N-p)S? =85S =Y'(In — H)Y (4.10)

and
SSp=(Y—-15Y)(Y-15Y) = (HY -N"'y1Y)(HY - N '1513Y) = Y/ (H-N"'151))2Y.

Moreover, since H1xy = 1y (this holds since HX = X and the first column of X is 1y) we
obtain (H — N71151%)? = H — N~!'151/y. and hence

SSr=Y'(H - N '151))Y. (4.11)
Since (In —H)H =0 and (Iy — H)1y = 0, we have that
(In—H)H—-N1'1y1y)=(Inx—-H)H - NIy - H)lyly =0,

and hence SSg and SSk are independent.
Consider the following so-called F-statistic, for testing Hg : 51 = ... = B = 0, against the
alternative that at least one (; # 0,

SSr/k

B =S5/ —p)

(4.12)

Recall that SSg/o? ~ X?V—p‘ Also under Hy we have that Y = Syly and hence

(H — N '1n13)Y = Bo(H — N '1y1y)1y = fo(H1y — N '1ny1y1y) =1y — 1y = 0.

14



Consequently
SSp=¢(H — N '1n1)y)e,

and hence SSr/0? ~ xi. Note that
rank(H — N~ '1y1y) = tr(H — N '1y1y) = tr(H) — 1 = k.

It follows that under Hy the statistic ' has Fj, y_, distribution.
Under alternative Hy, SSg/o? has noncentral chi square distribution SSg/0? ~ x2(8) with
noncentrality parameter

§=0FX'(H-N'"IyIy)XB=08(X'X - N1y X) (1yX))B.

Therefore under the alternative, the F-statistic has noncentral F' distribution with the noncen-
trality parameter § for SSg.

4.2 Estimation with linear constraints

Suppose that we want to test linear constraints a8 = ¢;, i = 1,...,q. We can write this as
ApB = ¢, where A is the corresponding ¢ x p matrix whose rows are formed from vectors a/,
i=1,...,q,and ¢ = (c1, ..., cq)'. We assume that vectors a;, i = 1, ..., ¢, are linearly independent,
i.e., matrix A has full row rank gq.

The respective constrained least squares estimator 3y is obtained as a solution of the fol-

lowing optimization problem

mﬁin(Y — XB) (Y — Xp) subject to AB = c. (4.13)

Consider the Lagrangian of the above problem (4.13):

LBA) = (Y -XB)(Y -XB)+2) N(aiB—c)
i=1
= (Y -XpB)(Y — XB)+2XN(AB - c).

Problem (4.13) is a convex quadratic problem. Optimality conditions for problem (4.13) can be
written as OL(B,A)/0B = 0 and AB = c¢. Note that

OL(B,X\)/0B = —2X'Y +2X'XB+2A'\.

Hence the optimality conditions can be written as the following system of linear equations

REIHRE!

X'x A
A 0
—A(X'X)"'A’. Since it is assumed that matrix X has full column rank and hence matrix X’'X
is nonsingular, and since matrix A has full row rank g, it follows that —A(X’X) ' A’ is non-
X'x A
A 0

Note that the Schur complement of matrix [ ] with respect to matrix X’X is

singular, and hence matrix [ ] is invertible. Therefore the corresponding estimators

are given by
[ X'x A ]‘1 [ X'y ]

20 . (4.15)

>
T =
Il
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-1

, after some algebraic calculations it is

/ !/
By using formula (2.7) for the inverse { X'x A ]

A 0
possible to write the estimator 85 in the following form

Bu =B+ (X'X)ATAX'X) A (e - AB), (4.16)

where 3 = (X’X)"'X'Y is the unconstrained LSE. It is possible to give the following geomet-
rical interpretation. Consider Yy =X By Recall that Y — Y is orthogonal to the linear space
generated by columns of matrix X. Since Y — Yy = X (B — By), it follows that Y — Y is
orthogonal to Y — Y. Hence (Pythagoras Theorem)

IY = YulP? = Y = Y|* + Y - Y|, (4.17)
where || - || is the Euclidean norm. Moreover
Y - Yy = X(X'X) A JAX'X) LA (e - AB). (4.18)

The term |Y — Yg||? represents the sum of squares of residuals of the reduced (constrained)
model, i.e., it is the optimal value of the least squares problem (4.13), and the term [|Y — Y||?
is the sum of squares of residuals of the full (unconstrained) model. By (4.18),

1Y = Yi|? = (A8 — ) [A(X'X) ' A') 7 (AB - ¢). (4.19)
The F-statistic for testing Hy : AB = c is

(SSe(H) — SSe(F))/q

B = s/ —p)

(4.20)

where SSg(F') is the sum of squares of residuals of the full (unconstrained) model and SSg(H)
is the sum of squares of residuals of the reduced (constrained) model. By (4.17) and (4.19) we
have

SSp(H) — SSr(F) = (AB —¢)[A(X'X)tA']71(AB - ¢). (4.21)

Recall that 8 ~ N(8,0%(X'X)~1), and hence
AB —c ~ N(AB—c, JQA(X'X)_lA’).

It follows by Theorem 3.1 that under the Hy : A8 = ¢ hypothesis, [SSg(H)—SSg(F)]/o? ~ Xg-
Also SSg(F)/o? ~ X%V—p and SSg(F) is independent of 3, and hence SSg(H) — SSg(F) and
SSp(F) are independent. It follows that under the Hy hypothesis, the F' statistic (4.20) has
F, n—p distribution.

The F-statistic (4.12), for testing Hy : 81 = ... = B = 0, is a particular case of the F-statistic
(4.20). Indeed in that case, under Hy, the LSE 3y = Y and hence SSg(H) = Syy. It follows
that SSE(H) — SSE(F) = SSk.

The statistical inference discussed in section 4.1 and this section is based on the assumption
that the error vector € has normal distribution. Without this assumption the inference is
asymptotic. Recall that for large N, the ¢F, y_, distribution becomes approximately like XZ
distribution.
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4.3 Polynomial Regression

Consider the polynomial regression model (one predictor)
Y; :ﬁo—}—ﬁll’z—l—ﬁkﬁﬂf—}—&“ i=1,...,N. (422)

We can formulate this as the linear multivariate model Y = X 3 + € with the design matrix

We have here [ X' Xy = SN a5t

i=1T;
Note that (Riemann sum)

1 1 N
25 Tde ~ — g wf+t,

0 N 4 1

1=

where z; is a point of the interval [(i — 1)/N,i/N], i = 1,..., N . Therefore

/ al s ~ ! s+t N
[XX]St:;$i+t~N/O $+d$:m, S,t:O,...,k.
That is
1 1/2 /3 o 1/(k+1)
1/2 1/3 1/4 - 1/(k+2)
X'X ~ N 1/3 1/4 1/5 - 1/(k+3)
V1) (k42 (kt3) - 1/@k+1)

This matrix is ill conditioned. Therefore polynomial regression of the form (4.22) typically
has multicollinearity problem for k£ > 3. To a certain extend this can be dealt with by using
orthogonal polynomials. A famous example of orthogonal polynomials is Chebishev polynomials.
Even so, polynomial regression of degree larger than 2 usually is difficult to interpret.

Chebishev polynomials

Tn(x) = cos[m(arccosz)], —1 <z <1.
Let 6 = arccosz. Then
To(x) = cos0=1,
Ti(z) = cosf=u,
Ty(z) = cos(20) =2cos’h —1 =222 — 1.

Recall that
cos(m + 1)8 + cos(m — 1)8 = 2 cos 0 cos m#.

It follows that
To1(x) + Tp—1(x) = 22T, (),

and hence
Tont1(z) = 22T, () — Tr—1(x)
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can be used for recursive computation of Chebishev polynomials. For example

T3(x) = 20Ta(x) — Ty () = 22(222 — 1) — x.

. . . 1 . .
By using substitution d arccos x = @dx, we can compute the following integral

1 1
g %dw = /1 cos(k@) cos(£9)dh = 0, for k # £.

For z; = cos(w/N)i and 0; = (7/N)i we have

N-1 N-1
Z Ty (i) Ty(zi) = Z coskb; cosll; =0, k # L. (4.23)
i=0 =0

For the corresponding polynomial regression
Y; = ﬁOTU(xZ) + /BlTl(:El) + ...+ /Bk:Tk(xZ) + Eiy 1= 17 ceey Na

the design matrix is
To(xr) -+ Ti(x1)
X = L.
To(rn) -+ Tr(zn)

By (4.23) columns of this design matrix are orthogonal to each other, and hence matrix
X'X is diagonal.

5 Shrinkage Methods

A norm || - ||, on space R™, assigns a nonnegative number to vector & € R™ . It should have the
following properties: (i) ||z|| > 0 for any  # 0, (ii) || Ax|| = |A| ||z| for any A € R and « € R™,
(iii) ||z + y|| < ||| + |ly|| for any x,y € R™. Properties (ii) and (iii) imply that function
f(x) = ||| is convex. Any two norms || - || and |- ||" on R™ are equivalent in the following sense:
there is a constant C' > 0 (depending on dimension m of the space R™) such that ||z| < C|lz|
and ||z|" < C|lx|| for all x € R™.

Important examples of norms are the £, ¢ > 1, norms defined as |||, = (Jo1]|9+...&|zm|9) /9.
In particular, the ¢2 norm is the Euclidean norm |z|s = /27 + ...+ 22, , and ¢; norm is
x|t = |z1] + ... + |zm|. Note that function || - ||, is homogeneous (i.e., satisfies the above
property (ii)) for any ¢ > 0. However for ¢ € (0,1), || - ||; does not satisfy property (iii), i.e., it
is not convex.

5.1 Ridge Regression

Consider the following approach, called Ridge Regression, to estimation parameters of the linear
model (4.2)
in |Y — X33 5 5.1
i ¥~ X8]3 + <515 (1)

where £ > 0. Solution B, of this problem satisfies optimality conditions

—X'"(Y — XB)+¢eB=0.

18



That is 8, = (X'X +eI,) ' X'Y (recall that p = k+1 is the number of estimated parameters).
Of course for ¢ = 0 the estimator B, coincides with the LSE 8 = (X'X)"'X'Y. It is also
possible to formulate problem (5.1) in the following form

. . 2 .
min Y — XBl3 subject to |8} < c, (5.2)
for a certain value of ¢ > 0 (take ¢ = ||3.]|2). Conversely solution of problem (5.2), for some

¢ > 0, is also the solution of problem (5.1) when ¢ is the corresponding Lagrange multiplier.
(If || 8|2 < ¢, then the corresponding ¢ = 0.) Therefore in a sense problems (5.1) and (5.2) are
equivalent to each other for a proper choice of the respective positive constants € and c.

The estimator B, shrinks the LSE to the origin. In particular if columns of the design matrix
X are orthogonal, i.e., matrix X’ X = diag(\1, ..., \p) is diagonal. Then

X'X +el, =diag(M\ +¢,...., \p+¢)

and B.; = (1 +¢/\)"'Bi. Let X'X = TAT' be the spectral decomposition of matrix X'X,
with Ay > -+ > )\, > 0 being the eigenvalues and A = diag(\1,...,\p). Then X'X + eI, =
T(A +<I,)T'.

Recall that number A;/), is called the condition number of matrix X’'X. The condition
number of matrix X'X +eI, is (A1 +¢)/(\p +¢), and can be much smaller than A\1/), even for
small values of € > 0 if the ratio £/, is large. Moreover 8, = T(A +¢I,) T’ XY, and hence

¥.=(A+el) ' XY,

where 4. = T8, and X = XT. Note that X'X = A and hence Jei = (1+¢/\) " 4, where 4
is the LSE of the corresponding linear model with X replaces by X. If ¢ is much larger than \;,
and hence the ratio £/); is large, then 4. ; becomes small. In that sense this procedure removes
from the design matrix X columns corresponding to small values of the eigenvalues \;, and in
an implicit way is related to the Principal Components Analysis discussed in section 15.

The estimator B, is biased, that is E[8.] = (X'X + ¢I,) 1 X'X. It is possible to show
that there exists € > 0 such that the components of 8, have smaller Mean Square Error (MSE)
than the respective components of the LSE 3. That is, let # = a’8 for some given vector a # 0,
and let 0, = o’ B. and 6 = a/B be estimators of . Note that a/3 is an unbiased estimator of
a’B3. We show that there exists € > 0 such that

MSE(.) < MSE(6),

where MSE(f) = E[(6 — 6)?] is the mean square error of an estimator 6.
Recall that .
B.=(X'X +¢eI,) ' X'Y =[I,+e(X'X)" 11713,

and hence ~
Elf.] = a/[I, + (X' X)" 1718

For a matrix A sufficiently small we have the following geometric series expansion
(I+A)'=T-A+A2— .. =T-A+0(A],

where [|A|| := sup,q ||Az||/||z||. By applying this to matrix A = e(X'X)7! for ¢ > 0 small
enough, we obtain

E[f.] = a/[I, — (X' X)" 8+ o(c) = 0 — ea/ (X' X) '8 + o(e),

19



where o(g)/e — 0 as € — 0. It follows that
Bias[0.] = E[f;] — 0 = —ea/(X'X) 718 + o(e),

and hence 3
Bias?[0.] = e?[a/ (X' X)7'18]% + o(e?) = o(e).

We also have that

Var[f.] = o2a'[I, +e(X'X)"|"YXX")" I, + (X' X)" "] ta
=oc%d[I, — (X' X) Y XX) I, — (X' X) a + o(e)
=02%d (X X')la - 2:e0%a’ (X' X)2a + o(e)

= Var[d] — 2e0%a’(X'X)2a + o(e).

Therefore
MSE(0) — MSE(0.) = Var[d] — Var[f.] — Bias’[0.] = 2e0%a’(X'X) %a + o(¢).

Since matrix X’X is positive definite, and hence (X’X)~2 is positive definite, and a # 0, we
have that o2a’(X’X)~2a > 0. It follows that for £ > 0 small enough the term 2e0%a’ (X' X ) 2a+
o(e) is positive, and hence MSE(6.) < MSE(6).

In particular this implies that for every i € {1,...,k}, there exists € > 0 such that
MSE(B.;) < MSE(B;). However for different i € {1,...,k} the corresponding ¢ can be dif-
ferent, and could be difficult to find. In practical applications the components of 3. are plotted

as a function of € > 0 until they stabilize.

5.2 Lasso method

The Least Absolute Shrinkage and Selection Operator (Lasso) method is based on using regu-
larization term of the form ¢||8||; for some € > 0. That is, the Lasso estimator 8, is obtained
as a solution of the following optimization problem

: . 2
ﬁnéﬁ},HY X8z +¢lBl1- (5-3)

Equivalently this can be formulated as

min |Y — X 8|3 subject to ||8]1 < ¢, (5.4)
BERP

for an appropriate choice of the constant ¢ > 0. If ¢ < ||3||1, then the Lasso estimator performs
shrinkage of the LSE 3.

Note that )
|lY — X33

op

where 8 = (X’X)"'X'Y is the usual least squares estimator. When ¢ < ||3|1, an optimal
solution of problem (5.4) is on the boundary of the feasible set S = {8 : ||B||1 < ¢} and the
corresponding optimality conditions are

—2(X'X)(B — B) € Ns(B),

where Ng(B) :={~v:4'(¢ —B) <0, V¢ € S} is the normal cone to S at B8 € S.
Optimality conditions for problem (5.3) are

=2(X'XB-X'Y)=2(X'X)(8 - B),

0€2(X'X)(8—B)+20|8]h,
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where 0||8||1 is the subdifferential of the function f(8) = ||3]1. The subdifferential 08|
consists of vectors g (the so-called subgradients) such that g; = 1 if 8; > 0, g; = —1 if 3; < 0,
and g; can be any number of the interval [—1,1] if 3; = 0. It follows that if € is bigger than the
absolute value of every component [X'Y]; of vector X'Y', then 8. = 0. If X'X is diagonal,
then B.; = 0, when £ > [X'Y];.

It is possible to look at Lasso estimation from the following point of view. By definition ||3]|o
is equal to the number of nonzero components of vector 3. Note that |||l = limgo ) |Bil?.
Consider the problem

min ||[Y — X 3|3 subject to |80 < ¢, (5.5)
BeRP

i.e., it is the least squares problem subject to the constraint that the number of used regressors
is not larger than c¢. This is a difficult combinatorial problem. Problem (5.4) can be viewed
as a convex approximation of problem (5.5). Problem (5.3) can be formulated as the following
problem

wmin (Y = X613 + 2 Yo &

(5.6)
st. B < —Bi<&, i=0,..k,
and problem (5.4) as
min |[|Y — X3||?
win Y - X33
st. Bi <&, —Bi<&, i=0,..k (5.7)

k
dico&i S e

Both problems (5.6) and (5.7) are convex quadratic programming problems, and can be solved
efficiently.

6 Elements of large samples theory

Let Y,,, n =1, ..., be a sequence of random variables. It is said that Y,, converges in probability
to a number a, denoted Y, N a, if for any € > 0 it follows that

li_}rn Prob{|Y;, —a| > ¢} =0.

Convergence in probability can be also considered for a sequence Y,, € R™ n =1, ..., of random
vectors. That is, Y;, converges in probability to a if for any € > 0,

le Prob{||Y,, — a|| > ¢} = 0.

It is straightforward to show that Y,, converges in probability to a iff its every component Y;,
converges in probability to a;, ¢ =1, ..., m.

Law of Large Numbers (LLN) can be proved by using Chebishev inequality. Let X be a
nonnegative valued random variable. Then for any € > 0 we have

Prob(X > ¢) = E [11.0)(X)] < E[e™'X] = 'E[X],

where 1 o)(7) = 0 if 2 < ¢ and 1. )(z) = 1 if ¥ > €. The above inequality sometimes is
called Markov inequality. Now let X be a random variable with finite second order moment,
i.e., E[X?] < co. By taking Y = (X — p)?, where u = E[X], we obtain from Markov inequality
the following Chebishev inequality:

Prob{|X — u| > e} = Prob{(X — u)? > €?} < e 2E[(X — p)?] = ¢ *Var(X).
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It follows that if Y}, is a sequence of random variables such that E[Y},] = y, for all n, and Var(Y;,)
tends to zero as n — oo, then then for any € > 0,

Prob{|Y;,, — u| > e} < e *Var(¥;) — 0.

This implies that V,, = p. In particular, if X1, ..., X, is iid with p = E[X;] and % = Var(X;),
then Var(X) = 02/n — 0, and hence X 5 1 as n — co.

The convergence of X to y in probability is referred to as the (weak) Law of Large Numbers
(WLLN). The stronger version of LLN is that X converges to u with probability one
(w.p.1), provided the mean p is well defined and finite. Note that convergence w.p.1
implies convergence in probability.

In Calculus the notation y, = o(x,) is used to denote that if z, and y, are sequences of
(deterministic) numbers, then y, /@, tends to zero as n — co. The notation y, = O(z,) means
that there is a constant C' > 0 such that |y,| < Clz,| for all n. Now let X,, and Y,, be two
sequences of random numbers. For random numbers counterparts of o(-) and O(-) are defined as
follows. The notation Y;, = 0,(X,) means that Y, /X,, 2 0 as n — co. Usually it is used when
X,, is deterministic. In particular Y;, = 0,(1) means that ¥, 2 0. Tt is said that Y}, is bounded
in probability if for any € > 0 there exists ¢ > 0 such that Prob{|Y,| > ¢} < ¢ for all n. The
notation Y,, = O,(X,,) means that Y,/ X, is bounded in probability. These notations op(-) and
Op(-) can be viewed as probabilistic analogues of their deterministic counterparts o(-) and O(-)
and have similar properties. For example if X,, = 0,(1) and Y,, = O,(1), then X,,Y;, = o0,(1).

Recall that X,, converges in distribution to a random variable X, denoted X,,~~X, if for any
number z such that Prob{X = z} = 0 it follows that

lim Prob{X, <z} = Prob{X < z}. (6.1)

n—00

Note that condition Prob{X = z} = 0 means that the cumulative distribution function (cdf)
F(z) = Prob(X < z) of X is continuous at z, and condition (6.1) means that lim, . F,(z) =
F(z), where F,(-) is the cdf of X,,. That is, X,, converges in distribution to X if the cdf of X,
converges to the cdf of X at every point where the cdf of X is continuous.

A sequence of random vectors X,, € R™ converges in distribution to a random vector X if

li_>m Prob{X, € A} = Prob{X € A}

for any rectangular set A = {x : a; < z; < b;, i =1,...,m} such that probability of X to be on
the boundary of A is zero.

Proposition 6.1 If X,~X, then X,, = Opy(1), i.e., if X,, converges in distribution, then X, is
bounded in probability.

Proof. Let F,(x) = Prob(X,, < z) and F(z) = Prob(X < z) be cumulative distribution
functions of X, and X, respectively, and € > 0. Recall that X, converges in distribution to X iff
limy, o0 Fo () = F(x) for every x € R such that F(-) is continuous at x. Therefore we have that
F,(x) — F(z) provided that F'is continuous at z. Since F(z) — 1 as x — 400 and F'(z) — 0 as
x — —00, there exists a constant cg such that F'(co) > 1 —e and F(—cp) < €. Moreover, since a
monotonically nondecreasing function can have only a countable number of discontinuous points,
we can choose this constant ¢y such that F' is continuous at ¢g. It follows that there exists IV
such that F,(co) > 1 — 2¢ and F),(cp) < 2¢ for all n > N. That is, Prob(|X,,| > ¢y) < 4e. Now
for every k there is a constant ¢, such that Prob(|X%| > ¢;) < e. Then for ¢ = max{co, c1, ...,cN }
we have that Prob(|X,,| > ¢) < 4e for all n € N. That is, for any € > 0 there is ¢ such that
Prob(|X,,| > ¢) < 4e for all n. This shows that X, is bounded in probability. O
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Theorem 6.1 (Slutsky’s theorem) If X,~X and Y, 20, then X, + Y~ X.

Proof. Consider the cdf F(z) = Prob{X < x} of X. Let x be such that F(-) is continuous
at x. We need to show that Prob{X,, +Y,, <z} tends to F(z) as n — oco. For € > 0 we have

Prob(X, +Y, <z) = Prob(X, +Y, <z|Y,| <e&)+Prob(X, +Y, <z|Y,| >¢)
< Prob(X,, <z +¢)+ Prob(|Y,| > ¢).

Since Y, 2 0 we have that Prob(|Y;| > ¢) tends to zero. Moreover let & > 0 be such that F(-)
is continuous at x + . Then since X,~X, we have that Prob(X, < x + ¢) tends to F(z + ¢).
It follows that

limsup Prob(X,, + Y, < z) < F(x +¢).

n—oo

Note that since F'(z) is monotonically nondecreasing, the set of points where it is discontinuous
is countable. Therefore we can choose a sequence &, | 0 such that F(-) is continuous at = + &,.
By continuity of F'(-) at z it follows that

lim sup Prob(X,, + Y, <) < F(x).

n—o0

In a similar way it is possible to show that
lim inf Prob(X,, + Y,, < z) > F(x).
n— oo
It follows that Prob{X,, +Y,, <z} tends to F(x). O

The concept of ‘bounded in probability’ can be extended to a sequence Y,, € R™ of random
vectors. That is, Y, is bounded in probability if for any € > 0 there is a bounded set A C R™
such that Prob{Y,, & A} < e for all n. It is not difficult to show that Y, is bounded in probability
iff its every component Y;, is bounded in probability.

Slutsky’s theorem also can be extended to random vectors. That is, if X, converges in
distribution to X and Y,, converges in probability to 0, then X ,, +Y,, converges in distribution
to X.

Theorem 6.2 (Delta theorem) Let X, be a sequence of m x 1 random wvectors and
g : R™ — R¥ be a function. Suppose that \y(X, — p)~Z, where p € R™ and N\, — oo,
and that g(-) is differentiable at p with Vg(pu) = 0g(p)/0x being the m x k matriz of partial
derivatives (Jacobian matriz). Then

A (9(Xn) — g(p)~[Vg(p)'Z. (6.2)
Proof. Since g(-) is differentiable at p we have that
g(z) —g(n) = [Vg(p)|'(x — p) + r(z),
where (x) = r(z)/||x — p| tends to 0 as & — p. Hence
M (g(Xn) — g(w) = [Vg()] (X0 — p)] + (Xn) [Anl| X — ] (6.3)

Now since A\,(X, — p) converges in distribution, it follows that A\, (X, — w) is bounded in
probability. Moreover since A, — oo it follows that X, LN p. Hence e(X,,) EN 0, and thus
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e(X ) [Anl| X n — pll] %, 0. By Slutsky’s theorem the convergence (6.2) follows from (6.3). [

In particular it follows that if in addition to the assumptions of Theorem 6.2, v/n(X, — u)
converges in distribution to normal N'(0, ), then v/n(g(X ) —g()) converges in distribution to
normal with zero mean and covariance matrix [Vg(p)]'2[Vg(p)]. For k =1, i.e., when g : R™ —
R is a real valued function, Vg(u) becomes the gradient Vg(p) = ( ( )/8931, ...,8g(,u)/8xm)’
and [Vg(u)]'S[Vg(p)] becomes the asymptotic variance of \/n(g(X g(p)).

Example 6.1 Let X, and Y,, be two independent sequences of random variables such that
Vi (Xn = pe)~N(0,02) and /n(Y, — py)~N(0,07), py # 0. Let us find the asymptotic
distribution of (V,, W,,), where V,, = X,,Y,, and W,, = X,,/Y,,. Consider g(x,y) = (zy,z/y).

Note that g(X,,Y,) = (Vi,, W,,). By Delta Theorem we have that \/n [ W Z x7y } converges
/My

in distribution to normal AV (0, ) with

s_| o ke Ha?g 02Huy 1/ py }

1/:“’3/ _:U’$/IU’§ 0 Oy K _Nx/ﬂz
That is, elements of the asymptotic covariance matrix ¥ are: o137 = ,u?/ag + u?caé,
2,2

099 = Ux/,uy (um/,uy) y 012 = 02 — (uz/py)’o ;- In particular, if p, = p, and 02 = oy,
then 012 = 0. In that case Vn = X,.)Y, and W,, = X,,/Y,, are asymptotically independent. O

Delta method can be extended to hight order terms. For example suppose that g : R™ — R is
twice continuously differentiable and Vg(p) = 0. Then the right hand side of (6.2) degenerates
to 0. Let H be the m x m Hessian matrix of second order partial derivatives at * = p, i.e.,

H;; = ngg;j, i,7 =1,...,m. The second order expansion of g(-) at p is

g(x) —g(p) = 3(x — p)'H(x — p) + r(z),

where the remainder r(z) is of order o([|z — pl*), i.e., 7(®)/|lz — p|* tends to 0 as x — p.
Suppose further that /n(X, — p)~Z. Then

n(9(Xn) —g(p))~3Z'HZ. (6.4)

That is, 2n(g(X,) — g(p)) converges in distribution to the quadratic form Q = Z’HZ.

7 Exponential family of distributions

It is said that X is distributed according to the ezponential family (in the canonical form) if its
probability density function (pdf) is of the form

f(,0) = exp | L5, 0:Ti(@) — A(6) | h(a), (7.1)

where 6 = (01, ...,0;)" € © is vector of parameters with

6= {e : [exp [Zle em(m)}h(x)dm < oo} .

Let us show that for Tj = T;(X) and Ey(Tj) = [ T}( 6)dzx,
0
Ba(T}) = 5 A(0). (72)
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82
Cov(T;,Ty) = A(9). 7.3
OV( 720 6) ae]aaz ( ) ( )
Indeed, we have that [ f(z,0)dz =1 for all @ € ©. Let 6 be an interior point of ©, and hence
the expectation and differentiation can be interchanged. We have that 6%3_ [ f(z,08)dx = 0 and

0 0

= = |Ti(z) — — A(0 0

5/ 0) = |Ty(@) = 55-40)] £(2.0),
and hence

0 0
0 3}
= BTy - angw)] = Eo(T) = 55-A(0).

It follows that Ey(7}) = 8%]_/1(0). The other equation follows in a similar way from

2

8 Point estimation

8.1 Maximum likelihood method

Consider a parametric family of distributions defined by probability density functions (pdf)
f(x,0), = € R™, with parameter vector 8 € © C R*. Given an iid sample X1,..., Xy,
the Maximum Likelihood (ML) estimator of 6 is the maximizer 6,, of the likelihood function
Ly(0) = Hfil f(X,8) over 8 € ©. Note that both Ly(8) and 8y are functions of the sample,
this is suppressed in the notation. Since log x is monotonically increasing for z > 0, this can be
written as
Oy € argmaxlog Ly (). (8.1)
6co

Note that such maximizer may not exist or could be not unique. We assume that the random
sample is an iid replication of random vector X having pdf g(x), written X ~ g(+), i.e., each X
has pdf g(-). In particular if g(-) = f(-,0%) for some 6* € ©, we say that the model is correctly
specified. It is said that the model is identified at 6* if f(-,0) = f(-,6%), 6 € O, implies that
0 = 0*. That is, 8* is the unique value of the parameter vector which defines the model.

Since log Ly (0) = Zfil log f(X,0), it follows by the LLN that for a given 6 the average
N~1log Ly(8) converges w.p.1 as N — 0o to

Eyflog (X, 8)] = / [log f(x, 6)] g(x)dz,

provided this expectation is well defined and finite. The notation E, emphasizes that the expec-
tation is taken with respect to the distribution of the sample defined by the pdf g(-). It is natural
then to expect that the ML estimator 8 will converge w.p.1 to a maximizer of Eg[log f(X, 9)]
over @ € ©. And indeed it is possible to prove that such converges holds under certain regularity
conditions. In order to understand what such maximizer is, we need the following inequality.

Theorem 8.1 (Jensen inequality) Let ¢ : R™ — R be a convez function and X be an m x 1
random vector having mean p = E[X]. Then

Elo(X)] = o(p)- (8.2)
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Proof. Since ¢(-) is convex we have that there exists v € R™ such that

o(x) > ¢p(p) ++'(x — )

for any & € R™ (vector ~ is called subgradient of ¢ at p). It follows that

E[¢p(X)] > ¢(p) + E[+' (X — p)].

Since E[v (X — p)] =~/ (E[X] — p) = 0, the inequality (8.2) follows. O

Kullback-Leibler divergence of pdf f(-) from pdf g(-) is defined as

Dl = [ 108 2D g(a)de = , 10g 229] = -5, [10g L],

(@) f(x) 9(x)
Since — log = is a convex function we have by Jensen inequality
_ f(x) f(x)
Digls) = —Eg[los’ 5] = —log, [T
—log/gégg(m)da} = —log/f(a:)da: =—logl=0.

That is, D(g||f) > 0 and D(g||f) =0 iff f = g.

Since
D(g()I[f(,0)) = Eq [log g(X)] — Eg [log f(X, 0)],

we have that maximizing Eg4[log f(X, )], over 8 € O, is equivalent to minimizing the Kullback-
Leibler divergence of f(-,0) from ¢g(-). In particular, if the model is correctly specified, i.e.,
g(+) = f(-,0*) for some 0* € O, then 6* is a maximizer of Egy«[log f(X,0)], over 8 € ©, where
the notation Eg« emphasizes that the expectation is taken with respect to the distribution
g(-) = f(-,6%). That is

0" € arg max {Eg* [log f(X,0)] = / [log f(w,G)]f(:v,B*)d:c} :
0cO

It follows that if the model is correctly specified and identified at 8* and some regularity condi-

tions are satisfied, then the ML estimator 8y converges w.p.1 to 8*. In that case it is said that

Oy is a consistent estimator of 8*.

8.1.1 Asymptotic distribution of the ML estimators

Let X ~ f(x,0), 8 € R*, be a random vector. The following k x k matrix is called (Fisher)
information matrix

1(6) =K, { [% log f(X, 9)] [% log f(X, 9)]'} . (8.3)

The notation Ey emphasises that the expectation is taken with respect to the distribution f(-, )
of X. Note that I(0) is a function of 6.

Let us show that )

1(6) = —E, {8569, log f(X, 0)} | (8.4)
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We need to show that

dlog f(X,0) dlog f(X,0) 0?
Eg{ 90, o0, }— —Eg {8080 log f(X, 9)} (8.5)

1,7 =1,...,k. We have that

/afé”; %) a = 2%, /fa: 9)d (8.6)

i.e., the operations of differentiation with respect to 6; and integration with respect to @ can be
interchanged. Then the right hand side of (8.6) is 0, since [ f(z,0)dz =1 for all 6. It follows

that
E dlog f(X,0) [ Olog f(x,8)
o 0 - 90

Suppose now that

f(z,0)dz =0, (8.7)

for all @ and hence

810gf (z,0) B
5 / F(x,0)dz = 0. (8.8)

By taking the derivative, in the left hand side of (8.8), inside the integral we obtain

- /89 [alogfxe)f(w)] -

& log f(x,0) dlog f(x,6) dlog f(x,8)
/(")GZ-GGJ- f(x,0)dx +/ 06, o0, f(x,0)dx
B 0? dlog f(X,0) Olog f(X,0)
= EG{BHi(?Hlegf(X’0>}+E9{ 2, 2, }, (8.9)
and hence (8.5) follows. O

Remark 8.1 The above derivations are based on the interchangeability property that the oper-
ations of differentiation with respect to 6; and integration with respect to & can be interchanged.
We used it twice, in (8.6) and again in (8.9). As it is discussed below the interchangeability
property (8.6) holds if f(x,-) is differentiable and there is nonnegative valued function K (x)
such that E[K(X)] < oo and

f(x,01) — f(x,0:) < K(x)]|01 — 02|, 61,62 € RF,

i.e., if f(x,-) is Lipschitz continuous with integrable Lipschitz constant. Similar condition is
needed for df(x,0)/06;, i =1, ..., k, in order to justify (8.9).

Let us discuss conditions ensuring that the expectation and differentiation can be inter-
changed. Let g(x,0) be a real valued function of x,6 € R. Suppose that g(x, ) is differentiable
in #. We would like to verify that
0 0

X,0 —g(X,0
SyElaX.0] =B | Za(x.6)].
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where the expectation is with respect to distribution of random variable X. We have

) o E[g(X,0+h)] —E[g(X,0)] . [g(X,0+h) - g(X,0)
a6 9(X, 0)] = limy h = pmE h ‘

In order to interchange the limit and the expectation (integration) we can use the Lebesgue
Dominated Convergence Theorem: if f,,g : @ — R are such that |f,| < g, [49dP < co and
fn(w) = f(w) for a.e. w e Q, then [, fudP — [, fdP.

That is, suppose that there is function K (z) > 0 such that E[K(X)] < co and for all h,

|9(X,0+ 1) — g(X,0)| < K(X)|h].

Then by the Lebesgue Dominated Convergence Theorem, the limit and the expectation (inte-
gration) can be interchanged and hence

) - 9(X,0+h) — g(X,0) g
55 El9(X,0)] =E [g% h ] =E L%)g(X? 9)} :

O

Let us show that the information matrix I(0) is positive semidefinite. We have that, for
a € R¥,

k
a’I(G)a = Z aiajlij(e),

ij=1

where dlog f(X,0) dlog f(X,06)

og ) og ’

I;;(0) = Eg { } ’
J 00; 89j

and hence dlog f(X,6) Olog f(X,0)

og ; og )

aia;lij(0) = Eq { (ai 6; > <aj 90; > } '

It follows that

k 2
T80 — Ey Zalgﬂxe)] |

YT 0,

=1

and hence a’'I(0)a > 0. O

Consider now the ML estimation procedure. Suppose that the model is correctly specified
and let Oy be the ML estimator of the true parameter value 8*. Assume that Oy is a consistent
estimator of *, i.e., Oy converges w.p.1 to 8*. Suppose further that 8* is an interior point of
the set ©. Since Oy is a consistent estimator of 0*, it follows that O is in the interior of the set
© for all N large enough. Then since 6 is a maximizer of log Ly (6), the following optimality
condition holds

) ZN i
=1

By the Mean Value Theorem we can write

o [& . o [ 2 N ) A
20 ZZ:;lof;{f(Xi,Hz\f) = 90 ;logf(Xz’,O) + W;logf(Xi’eN) (On — 6%),
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for some Oy between 6y and 6*. It follows that

VN(y -6) = —VN [8080’ > log f( Xz79N)] [880 ;log f(Xi,B*)]

- [Naeae’ Zlogf XZ,HN)] [\/Nae;bgf(Xi,H )] . (8.11)

Since @, and hence 6y, converge to 8* w.p.1, we have by the LLN that

1 2 2
NWZlogf X;,60y) = Z o5 108 /(X 0n)

converges to —I(6*). Now note that

Eqg [glogf(X,B)} Eg[ ] /89 wedw—ae /fa:@

Therefore by the CLT we have that \F 39 Zf\; 1 log f(X, 6*) converges in distribution to normal

with zero mean vector and covariance matrix I(0*). Together with (8.11) this implies that
VN(Oy — 6°)~N (0,1(6%)71). (8.12)

That is, the ML estimator 6 has approximately normal distribution with mean 6* and covari-
ance matrix N~1T1(9*)~!L. O

Remark 8.2 The above derivations of the basic result (8.12) involve several assumptions (reg-
ularity conditions). The asymptotic result (8.12) is local, it is based on the second order ap-
proximation of the likelihood function at the true value 6*. So the MLE estimator should be
consistent in order to justify such approximations. In order to apply necessary condition (8.10),
the MLE should be an interior point of the set O, i.e., should not be on the boundary of the
set ©. If 8* is a boundary point of ©, then the asymptotics of the MLE is different. We also
needed the interchangeability property, that the operations of integration with respect to  and
differentiation with respect to 6 can be interchanged (see Remark 8.1). O

Example 8.1 Suppose that X, ..., Xy are iid having uniform distribution on the interval [0, 6],
0 > 0, with pdf f(x,0) = 1/0 for x € [0,0], and f(x,0) = 0 otherwise. Hence the likelihood
function is Ly(0) = 1/6Y for Xy < 0, where X(y) = max{Xy,..., Xy}. Since Ly(f) is
monotonically decreasing with increase of 8, the MLE is given by the smallest possible value of
¢ which is X(ny. That is Xy is the MLE of 6.

The cdf of X; is F(x) = 2/0 for z € [0,60]. Then the cdf of N [0 — X ], for z € [0, N0], is

Prob (N[H — X(N)] < x) = Prob(X(N) >0-— :U/N) =1- Prob(X(N) <f-— m/N)
= 1—-Prob(X;<6—xz/N,i=1,..,N)
N
= 1—]]Prob(X; <6 —=z/N)
=1

= 1-[F(0—z/N)N =1 (1-z/(NO)N
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Furthermore

: - N _  —z/8
]\}gnoo(l z/(N§))" =e /"

It follows that the cdf of N [9 - X( N)} converges to 1 — e */%.  This implies that
N[0 — X(n)] converges in distribution to exponential exp(A) with A = 1/6. Note that the
situation here is not standard, the Optimality equation (8 10) is not applicable here. Also the
asymptotic variance is of order O(N ~2) rather than O(N~!) as in the standard case. O

8.2 Cramér - Rao lower bound

Let X = (X1, ..., X n) be an iid sample from f(x,0), § € R, and T'(X) be a statistic, i.e., T'(X)

is a function of X. Note that f(x,0) = vazl fi(x;,0) is the pdf of X = (X1,..., X ), where

fj(=;,0) is pdf of X ;. Since the sample is iid, pdfs f;(-,0) are the same for all j =1,..., N.
Then under some regularity conditions

Varg[T(X)] > ix (0)~'[99(6)/06)°, (8.13)
where g(0) := Ey[T(X)] and

ix(0) = Ey [(5@ log f(X, 9)) ] (8.14)

is Fisher’s information of f(x,6). In particular, if Ey[T(X)] = 0, i.e. T(X) is an unbiased
estimator of 6, then
Varg[T(X)] > ix(0) "

Note that, by the independence of X1, ..., Xy,
. 0
ix(0) = Varg [89 log f(X 9] ZV&I@[ logf](Xj,O)] Ni(6),

where i(0) = Eg [(4; log f;(X;,0))?] is the information number of individual X ;.

Proof. We have that

0 9 f(x, 9
Ey | = log f(X,0)| = [ 2222 0)dx = 0)d
o[goesenn] = [ B e = [ Grenie= 5 [ ie.0e
provided the derivative can be interchanged with the integral (see Remark 8.1). Then

0 0 0
Cova (T(X), 108 F(X.0)) = Bo |T(X) 55 108 /(X.0)| = Bo |T(X) 53 F(X.0)/(X.0)
_ /T(w)@f(a:,&)/@&dw: (%/T(a:)f(w,@)dw.

That is,
Covg (T(X), & log f(X,0)) = ZET(X)] = dg(0) /8.

Now by Cauchy inequality we have
2 .
[Covyg (T(X), L5 log f(X,0))]” < Varg[T(X)]Varg [% log f(X,0)] .

Moreover
Varg [ 5 log f(X,0)] = By [(flog f(X.0))*] =i(0),
and hence the inequality (8.13) follows. O

This bound can be extended to a multivariate setting.
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Theorem 8.2 (multivariate Cramér - Rao lower bound) Let X1,..., X be an iid sam-
ple from f(x,0), 8 € R*, and T = T(X) be an unbiased estimator of 0, i.e., Eg[T(X)] = .
Suppose that the information matriz I(0) is nonsingular and the interchangeability property
holds. Then

vare(zle aT) > a'1(0)'a (8.15)
for any a € R”.

Proof. For a,b € R* we have (by using the interchangeability property)
k

k
Cove(;ami_;bjf@jlogf(x 0) - cove(zaz l,zb LI
k k L
/(;q ; )(;bjafm 9)/96; )dm_;b]ae / Zal p (z,0)dz =
k
ijai_Ea[zaiTi]
j=1 J i=1

It follows by Cauchy inequality

k 0 s 2 - i 0 2
;bjaejﬂﬂe{;aiﬂ} SV&I‘&(;CME)EG (;bj&ojlogf()(?e))

Since T is unbiased we have that Ey [Zle aiTz} = Zle a;0;, and hence Eg [ZZ 1 azT,} = aj;.
Also Vary ( ZZ 1 ale) = a/Xa, where X is the covariance matrix of 7', and

(Z bjaz log f(X, 0))2 — b'I(0)b.

j=1
We obtain that
(a'b)? < (a’Sa)(b'I(0)b).
It follows that b (aa')b
aa
'Ya > — .
=4 = V)b

The maximum in the right hand side of the above inequality is attained for b = I(0)~la (see
section 13.1.1), and hence this maximum is equal to a’I(8) 'a. Therefore we obtain that

aXa>dI0) 'a (8.16)

for any a € R¥. O

Definition 8.1 It is said that a sequence of estimators Wiy is asymptotically efficient for 0 if
VN(Wx — 8) converges in distribution to normal N'(0,X) with covariance matriz ¥ = I(0)~!

The basic result (8.12), of asymptotic normality of the ML estimator 8y, shows that the
MLE is asymptotically efficient. That is, in the standard case, under the corresponding regularity
conditions, the MLE attains asymptotically the smallest possible variance. It could be noted
that the bound (8.15) is not asymptotic. On the other hand, it assumes that the estimator 7" is
unbiased, while the ML estimators often are biased. There are some other concepts of the “best
possible” estimators. In the next section we briefly discuss some basic concepts.
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8.3 Best unbiased estimators

Let X1,..., Xy be an iid random sample and f(x,0) be pdf of X = (X71,..., X ). By writing
Py it is emphasized that the probability distribution of X depends on the parameter vector 6.

Definition 8.2 A statistic T(X) is a sufficient statistic for 0 if the conditional distribution of
sample X given T(X) does not depend on 0. That is, Prob(X € A|T = t) is independent of 0
for all (measurable) sets A and t in the range of T'.

Note that a sufficient statistic always exists, take for example T'(X) = X.

Theorem 8.3 (Fisher - Neyman factorization criterion) Suppose that X has pdf f(x,8),
0 €©. Then T =T (X) is sufficient for 0 iff f(x,0) = g(T(x),0)h(x).

Proof. (Sketch for discrete distribution)
Suppose that T is sufficient. Then Since X = (X1, ..., X ) has discrete distribution, the weight
function f(x,0) = Py(X = x), where x is in the range of X. Moreover

PX =x)=) P(X=aT=t),

where the summation over possible values of T'. Also since T'= T'(X),

Y P(X=a,T=t)=Py(X =2,T=T(x)).

Then
Py(X =2, T=T(x)) = Py(T =T(x))Pp(X = z|T =T(x)),

where is used formula Prob(A N B) = Prob(B)Prob(A|B) for events B := {T = T'(x)} and
A:={X =z}

By sufficiency of T' we have that the conditional probability h(x) = P (X = z|T =
T(x)) does not depend on 6. Define g(T'(x),8) := Pyp(T = T(x)). It follows that f(x,8) =
g(T(x),0)h(x). This shows that sufficiency implies factorization.

Now suppose that f(x,0) = g(T(x),0)h(x). Then when T(x) =t we have

— x|T = _ P@(sz,T:t) _ g(T(.’E),@)h(.’E)
PX =T =1) Py(T'=1) 21— 9(T(y),0)h(y)
t,0)h(x h(x)

9(T(@),0h@) _ gl _
ZT(y):t f(ya 0) ZT(y):t g(t’ 0 h(y) ZT(y):t h(y) ’

which does not depend on 6. If T'(x) # ¢, then Py(X = z|T =t) = 0. It follows that T'(X) is
sufficient. O

Let T(X) be a sufficient statistic for . Then by the Factorization Theorem, the likelihood
function

Ly(8) = f(x,0) = g(T(x),0)h(x).
It follows that the MLE 8 is a function of T, i.e.,

6 € argmax g(T(x), 0).
0
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Definition 8.3 A sufficient statistic T = T'(X) is said to be minimal sufficient if for any other
sufficient statistic S = S(X), there exists a function g(-) such that T' = g(5).

Theorem 8.4 (Lehmann - Scheffe) Suppose that there exists T(X) such that for any x and

y, the ratio ;Ez’z; is independent of 0 if only if T(x) = T'(y). Then T(X) is a minimal sufficient
statistic for .

Proof. Let us show that 7'(X) is sufficient. For ¢ in the image of T'(x) consider sets
Ay ={z : T(x) = t}. For t in the image of T'(z), consider a point x; € A;. We have that zp ()
and « are in the same set Ay, i.e., T'(x) = T(x7(4)), and hence by the assumption of the theorem,
the ratio f(x,0)/f(x7(z),0) does not depend on 6. Define h(x) = f(x,0)/f(x7(z),0),0) and
g(t,0) = f(x,0). Then

f(mT(:l:)7 G)f(l', 0)
f(mT(a:)v 0)

It follows by the Factorization Theorem that 7'(X) is a sufficient statistic.
Let us show that 7'(X) is minimal sufficient. Let 7”(X) be a sufficient statistic. By the
Factorization Theorem, f(x,0) = g(T'(x),0)h(x). Suppose that T"(x) = T’(y). Then

f(x,0) _g(T'(x),0)h(z) _ h(z)

f(x,0) = = 9(T(x), 0)h(x).

f(y,0)  g(T"(y),0)h(y)  h(y)

Since this ratio does not depend on 6, it follows by the assumption of theorem that T'(x) = T'(y).

That is, T"(x) = T'(y) implies that T(x) = T'(y). It follows that T(X) is a function of 7"(X).

O

Note that the second part of the above proof shows that a sufficient statistic 7'(X) is minimal

sufficient if the following implication holds: if the ratio f(x,0)/f(y,0) does not depend on 6,
then T'(z) = T'(y).

Example 8.2 Consider exponential family of distributions in the canonical form (see eq. (7.1)),

k
[(@,0) = exp{ 30T () — A(6) bh(x). (8.17)
=1

with parameter space

k
0= {9 : /exp { ZGZTZ(:U)}h(x)da: < oo} )
i=1

It follows by the Factorization Theorem that (71(X),...,Tx(X)) is a sufficient statistic. Note
that the set © is convex. Also

f@.0) _ (N~ h(x)
= ex i(Ti(x) = Ti(y)) 17—+
Fo.0) ~ P V)]

Suppose that the set © has a nonempty interior. Then if the ratio f(x,0)/f(y,0) does not
depend on 0, then T;(x) = T;(y), i = 1, ..., k. Indeed if this ratio does not depend on 6, then

a0, exp{; z( i(x) — z(’!D)}@—( i(x) — Z(y)) exp{; l( i(x) — l(y))}@

is zero at every interior point of the set ©. It follows that T;(x) = T;(y). This implies that
(Th(X),..., Tk (X)) is minimal sufficient. O
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We assume in the remainder of this section that g : © — R is a real valued (measurable)
function.

Definition 8.4 An estimator T = T(X) of g(0) is a best unbiased estimator if Eg[T] = g(8)
for all 8 € ©, and for any unbiased estimator S = S(X) of g(0) it follows that

Varg[T] < Varg[S], VO € ©.
Best unbiased estimator is called Uniform Minimum Variance Unbiased (UMVU) estimator.

Finding an UMVU estimator could be not easy. The following result shows that conditioning
of any unbiased estimator on a sufficient statistic will result in uniform reduction of the variance.
Therefore if an UMVU estimator exists, then it is a function of (minimal) sufficient statistic.

For random variables X and Y, we use below property E[X] = E[E[X|Y]] of conditional
expectation, and the following formula

Var(X) = E[Var(X|Y)] + Var[E(X|Y)], (8.18)

for conditional variance
Var(X[Y) = E[(X — E(X|YV))*|Y].

Indeed
Var(X) = E[(X —E(X))*] = E[E[(X —E(X))*]|Y]
- E [E[(X ~ E(X|Y) + E(X]Y) — E(X))] |Y}
= E[E[(X - EX|Y))’|Y]] + E[(E(X[Y) - E(X))?].

Var(X[Y') Var[E(X|Y)]

In the above derivation we used that
E[(E(X]Y) - E(X))?|Y] = E[(E(X]Y) - E(X))?],
since (E(X|Y) — E(X))? is a function of Y, and that
E[(E[(X - EX[Y))(EX]Y) - EX))[Y] = E[(EX - EX|Y)[Y)([EX]Y) - E(X))] = 0.

Theorem 8.5 (Rao - Blackwell) Let W be an unbiased estimator of g(0), and T be a suffi-
cient statistic for 6. Define h(t) := E[W|T =t]. Then Eo[h(T")] = g(0) and

Varg[h(T)] < Varg[W], VO € ©. (8.19)
Moreover, unless Pp{W = h(T)} =1, the inequality (8.19) is strict.

Proof. Note that by sufficiency of T', h(T') does not depend on 6 and hence is a statistic.
We have that
Ey[h(T)] = Eo[E[W|T = t]] = Eg[W] = g(6).

That is h(T') is an unbiased estimator of g(6). Now by using formula (8.18) for conditional
variance

Varg[W] = Varg[E(W|T)] + Eg[Var(W|T)]
— Varg[h(T)] + Eg[Var(W|T)] = Varg[h(T)],

and hence (8.19) follows. Moreover, Eg[Var(W|T')] > 0 and hence the inequality (8.19) is strict
unless Pp{W = h(T)} = 1. O
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Theorem 8.6 An UMVU estimator W (if it exists) of g(0) is unique.

Proof. Let W’ be another UMVU estimator of g(@). Then W* = (W + W')/2 is unbiased
and
Varg(W*) = 1 Varg(W) + 1 Varg(W’) + 5 Cove(W, W').

Now by Cauchy inequality
Covg(W, W') < [Varg(W) - Varg(W')]"/2,

and Varg(W) = Varg(W') by the minimum variance assumption. Hence Vary(W*) < Vary(W).
Since W is UMVU it follows that Varg(W*) = Varg(WW) for all 8 € ©. The equality in Cauchy
inequality holds only if W/ = a(8)W + b(8). Then

Coveg(W, W') = Cove(W, a(8)W + b(8)) = a(@)Varg(W).

Also by the above we have that Cove(W,W’) = Varg(W) and hence a(6) = 1. Moreover
Eg[W'] = g(0) = E¢[W] and hence b(8) = 0. It follows that W = W', O

Definition 8.5 Loss function (for estimating g(6)) is a nonnegative valued function L(6,a),
0 €O, acR, such that L(0,g(0)) =0 for all 6 € ©. Risk function R(0,T) := Ey[L(0,T(X))],
where T(X) is an estimator of g().

For example L(6,a) := |a — g(0)|P, p > 0, is a loss function. If L(,a) = (9(8) — a)?, then
R(6,T) = Eo[(9(6) — T(X))?]
is the Mean Square Error of estimator T" of ¢(6).

Theorem 8.7 (Another version of Rao - Blackwell theorem) Let L(6,a) be a loss func-
tion, W be a sufficient statistic and h(t) = E[W|T = t]. Suppose that L(0,-) is strictly convex.
Then

R(6,h(T)) < R(6,W), (8.20)

and the above inequality is strict unless Pp{W = h(T")} = 1.
Proof. By using Jensen’s inequality
R(6, h(T)) = By [L (6, BWIT])] < Ey[E[L(6,W)|T]] = Eg[L(6,W)] = R(6,W).

The inequality (8.20) follows and this inequality is strict unless Pp{W = h(T")} = 1. O

9 Hypotheses testing

Let X = (X1,...,Xn) be a random sample (data). Consider testing Hy : 8 € Oq versus
Hi : 0 € O, where ©9,0; C RF. A procedure for such testing consists of choosing a set
R C R%, referred to as the rejection region, and hence defining its complement R® = R%\ R
referred to as the acceptance region, where d is the dimension of X . That is, reject Hy if X € R.
Alternatively this can be formulated as accept Hy if X € R°. Rejecting Hy automatically means
acceptance Hip, and acceptance Hy means rejection of Hj.
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There are two types of errors, type I error - reject Hy when Hq is true, type II error -
accept Hy when Hj is false. The corresponding probabilities a = Py(type I error) and g =
Py(type II error). That is

o = PQ(XER), 6 € O,
B = Py(X €R, 6¢c0,.

Power of the test is 1 — 8 = Pyp(X € R), 6 € ©1. Note that o« = «(0) and 8 = () are functions
of 6.

Theorem 9.1 (Neyman - Pearson Lemma) Consider simple alternatives Hy : 8 = 0g ver-
sus Hy : @ = 01 with respective pdfs f(x,00) and f(x,01). Then the minimal error rejection
TEGLON 1S

R={xcR%: f(x,0,) > rf(x,00)}, (9.1)

where > 0 is such that [y, f(x,80)dx = a.
Proof. Note that fR f(x,00)dx = o and ch f(x,01)dxe = . We want to choose region
R, or equivalently R€, such that the probability of type I error equals the significance level «,

and the probability of type II error is the smallest possible. For a constant x > 0 this can be
formulated as minimization of

f(x,01)dx + K,/ fx,60)dex,
Re R

with respect to R (or equivalently with respect to R®), subject to [, f(x,00)dx = o. Since
R = R%\ R we have that

/ f(z,00)dz = / f(z,00)dx — [ f(x,0p)dx.
R Rd Re

Moreover [pq f(2,600)dx = 1, and hence

f(x,01)dx + fi/Rf(a:,Bg)da: =K +/ [f(x,01) — kf(x,00)]dx.

C

Rec

It follows that the minimum is attained for
R = {x : f(m’el) - Hf(w,a()) < 0}7

or equivalently for
R = {x : f(mvel) - ’V”'f(mveo) > 0}

Note that for k = 0 the rejection region R = R? and hence a@ = 1. By increasing & the
refection region shrinks and || g f(x,00)dx continuously decreases and tends to zero. Therefore
we can choose & such that [, f(z,8¢)dz = a. O

Suppose that T'(X) is a sufficient statistic for 8. By Factorization Theorem (Theorem 8.3),
f(x,00) = g(T'(x),00)h(x) and f(x,01) = g(T(x),01)h(x). Therefore the rejection region (9.1)
can be written as

R={z:g(T(x),01) > rg(T(x),00)}.
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9.1 Likelihood Ratio Test

Consider
M) = SWPoco L(9) ’
Supgce, L(0)
where © = ©¢g U ©; and L(#) = f(x,0) is the corresponding likelihood function. Note that
A(zx) > 1 since ©g C ©. The rejection region of the Likelihood Ratio Test (LRT) is

R={x: \x) > ¢},

for some ¢ > 1. That is, the Hy is rejected for large value of the LRT statistic.
If T(X) is a sufficient statistic for 8, then by the Factorization Theorem

supgeo 9(7'(x,0))
supgee, 9(T'(x,0))

Az) =
That is, the LRT can be formulated in terms of the sufficient statistic 7'(X). For simple
alternatives when ©¢ = {6y} and ©; = {6} we have that

max{L(6o), L(61)}
L(8o)

A(x) = = max {1, f(z,61)/f(x, 60},
and hence this is equivalent to the rejection region of the Neyman - Pearson Lemma.

Let us discuss asymptotics of the LRT. We will discuss this for the simple hypothesis
Hy : 6 = 0, against the unrestricted alternative H; : 8 € R¥. We have that

2log A(X) = —2log L(0g) + 2 sup log L(6).
OcRF

Note that

sup log L(6) = log L(6),
OcRF

where 0 is the ML estimator under the unrestricted alternative Hy. Consider
6
S5(6) = logL Z log f(X;,0), (9.2)

called the score function. Note that S(8) = 0 (necessary optimality condition), and Eg[S(8)] = 0
(see equation (8.7)). Now using second order Taylor approximation,

~

log L(8) ~ log L(60) + [ 25 1og L(60)]' (& — 80) + L(6 — 6)’ [ e log L(ao)] (6 — ).

=

Note that % log L(6p) = S(6p) and log L(6) = -2, 5(80). Hence and since S(6) = 0,

8060’ 06’

log L(8) ~ log L(69) — [S(8) — S(60)]" (6 — 80) + 1(6 — 60) [55:5(60)] (& — 60).
Also first order approximation of the score function:

0

5(8) — S(6p) ~ [80,

S(e@] (6 0y).

37



Therefore

2log \(X) = —2logL(8g) + 2log L(6)
2
< (0 00) |~ 0 L(00)| (0 00

= [VN(®-60)] {

2

¥ 5o O L0 [V (6 - a0)].

Assuming Hy, we have that v/N(6 —0q) converges in distribution to N'(0, I(8g)~"), and by (8.4)
and the LLN,

1 92

~N Bege 08 H00) = -

converges in probability to I(6g). It follows that under Ho, the statistic 2log A\(X') converges in
distribution to the quadratic form Z’[I(8)]Z, where Z ~ N(0,1(60)~'). By theorem 3.1 this
implies that 2log A(X) converges in distribution to x3. O

In general 2log A\(X') converges in distribution to x7 o under Ho, where ©g C R* is a smooth
manifold of dimension ¢ = dim ©y.

Power of the LRT under local alternatives
Suppose the following so-called parameter drift (local alternatives) for testing Hy : 8 = 69
against Hy : Oy = 0 + Nfl/zb, where b € RF is a fixed vector. Then

V(6 — 89) = VN(6 — 6g.n) + VN(Bo.n — 60) = VN(8 — 6g.n) + b~ N(b,1(80)7").
Hence under local alternatives
2log A ~ [V'N (6 — 60)]'T(80)[V'N (6 — 6¢)]
can be approximated by the noncentral chi-square distribution X%(é) with the noncentrality
parameter § = b'I(0)b (Theorem 3.3).
9.2 Testing equality constraints

Consider testing Hy : a(0) = (a1(0), ..., aq(0))" = 0 against H; : a(6) # 0. Let

6 = arg max L(#) and @ = arg max L(6)
OcRF a(6)=0

be the respective unrestricted and restricted ML estimators. We have here that the 2log Likeli-
hood Ratio Test (LRT) statistic is 2[log L(#) — log L(#)]. Under Hy (and the regularity condi-
tions) this test statistic converges in distribution to xg.

Wald test statistic. Consider testing (linear?) equality constraints Hy : A = c against
Hy: A0 # ¢, where A is ¢ X k matrix of full row rank q. The Wald test statistic is

W= N(A8 — c)(AI(8)'A") " (A0 - c).

“For nonlinear constraints we can use A = da(8)/00’.
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Suppose that the corresponding regularity conditions hold so that the (unrestricted) ML
estimator 0 is a consistent estimator of the population value 6* of the parameter vector, and
VN (6 — 0*)~N(0,1(6*)71). Then under Hy (i.e., A0* = c)

VNA(6 —6%) = VN(AB —c)~N(0,AI(6")1A).

It follows that under Hy the Wald test statistic converges in distribution to Z'(A I(6*)~1A")~!
where Z ~ N(0,AI(6*)"1A’). Therefore by Theorem 3.1, under Hy the Wald test statistic
converges in distribution to Xg-

Note that the LRT

. . , R 1 02
2[log L(6) — log L(O)] ~ inf [\/N(O -0

Ab=c N 0600’ log L(6%)| [VN(6 — 6")].

Also using formula (8.4) for the information matrix and L(6*) = f(x, "), by the LLN we have
that — 4 8089, log L(6*) ~ I(6*) under Hy. Therefore under Hy, the LRT and Wald test statistics
are asymptotically equivalent.

Score function test statistic. Consider testing Hy : 8 = 0 against H; : 8 # 6. The score
function test statistic is

N715(80)'1(60)71S(80),

where S(8) is the score function (see equation (9.2)). Recall that Eg[S(6)] = 0 and N~/25(9)
converges in distribution to N (0, 1(8)). It follows that under Hy,

NflS(Bo)’[(@o)ils(eo)wxi.
In general, under Hy,
N71S(6)'1(0)"'5(8)~x;
when testing ¢ equality constraints.

10 Multinomial distribution

Consider Y = (Y1, ..., Y%) with Y1 + ... + Y = N and

Prob(Y = y) =

al

where p; > 0,4 = 1,...,k, and p; + ... + pr = 1. We denote this as Y ~ Mult(N,p), where
p = (p1,...,pk)". In particular, for k& = 2 this becomes binomial distribution Y ~ B(N,p) with

Prob(Y =y) = (1;[) pY(1—p)NY y=0,1,..,N.

y! x -

The log-likelihood function, up to a constant independent of p, is L(p) = Zle Y; log p;.
Therefore the ML estimator of p is given by the solution of the problem:

Y1 ; subject t =1.
1;1%; ilogp; subject to p1 + ... + py
It follows that the ML estimators are p; = Y;/N, i =1, ..., k.
If Y ~ Mult(N,p), then the covariance matrix Cov(Y) = NC, where ¢;; = pi(1 — p;),

i=1,...,k and ¢;; = —pipj, © # J.
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Indeed each Y; has binomial distribution with probability of success p; and hence Var(Y;) =
Np;i(1—p;). Moreover, Y; +Yj, i # j, has binomial distribution with probability of success
p; + pj and hence

Var(Y; +Y;) = N(pi + p;)(1 — pi — p;) = N(pi — 0} + pj — 0} — 2pi;).
On the other hand
Var(Y; 4+ Y;) = Var(Y;) + Var(Y;) + 2Cov(Y;, Y)),
and Var(Y;) = N(p; — p?), Var(Y;) = N(p; — p?) It follows that Cov(Y;,Y;) = —Np;p;.

This can be written as C = P — pp/, where P = diag(ps, ...,px) and p = (p1, ..., px)’. Note that
C1; =0 and rank(C) =k — 1.
Consider testing Hy : p = p* against H; : p # p*. The corresponding log LRT statistic is

k k
log)\:ZYilogﬁi—ZYilogpl ZYlog—.

i=1 i=1

Note that (second order Taylor approximation of logx at x = 1)
logz =2 —1-1(z—1)*+o(z — 1)

Under Hy values p; are close to p; and hence

Moreover
k k
>3 -1) = 2w v =0
i=1 i=1

since S pr =1 and Y% | ¥; = N. Hence under Hy,
2log \ = 225/1 D Zk: (¥ - Npl) Zk:(Yi_Npi)z
ogA = og — ~ ,

=1 pl i=1 i
where in the last approximation we used p} ~ p; = Y;/N. Values Y; are called observed frequen-

- *\2

cies, Np} are called expected frequencies, and > | % is the famous Pearson’s chi-square

test statistic. We see that the LRT statistic 2 Zle Y, log 1% and Pearson’s statistic asymptoti-

cally are equivalent under Hy. Pearson’s statistic can be viewed as quadratic approximation of
the LRT statistic.
We can write Pearson’s statistic as

k
(Y; — Np?)? ) o
AL A —_ p* —_ p*
;:1 Np? N@E-p)Q®-p),

where p = (Y1/N,...,Y,/N)" and Q := diag(1/p], ..., 1/p;). By the CLT, under Hy, VN(p—p*)
converges in distribution to normal N (0,C). Recall that since 1)p = 1 and 1;p* = 1, the
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covariance matrix C has rank k£ — 1, and hence is singular. Therefore the normal distribution
Nk (0, C) is degenerate.

Consider Z ~ Nj(0,C), let us show that Z'QZ has x3_, distribution. For W := Q'\?z
we have that W'W = Z'QZ and W ~ N, (0, M), where M := I} — (p*'/?)(p*'/?). Matrix
M is a projection matrix of rank

rank(M) = tr(Iy — (p*/3)(p* /%)) =k — ("2 (p*/?) =k — X5 pf =k — 1.

Since M is a projection matrix of rank k — 1, it has k — 1 eigenvalues equal 1 and one eigenvalue
0. Therefore it has the spectral decomposition M = TAT’ with A = diag(1,...,1,0). Consider
Y := T'W. Since matrix T is orthogonal we have that W'W =Y'Y. Also Y ~ Ny (0, T"MT).
Since the last element of matrix T MT = A is zero it follows that Var(Y}) = 0 and hence Y = 0.
Therefore Y'Y =Y + ... + Y2 | ~ x3_,. It follows that under Hy, N(p — p*)'Q(p — p*) con-
verges in distribution to X%—l' O

General model: p = p(0), 8 € RY, with Zle pi(0) = 1. The ML estimator of parameter
vector 0 is solution of the optimization problem

k
Y;1 (0).
mgxzz; i ngz( )

Suppose that the model is correct, i.e., there is 8* € R? such that p* = p(6*), where p* is the
true (population) value of the parameter vector. Suppose further that the model is identified at
0%, i.e., if p(6) = p(6*), then § = 6*. Let p be a consistent estimator of p*. Then asimptotically
the ML estimation is equivalent to

min(p — p(6))'Q(p — p(6)),
where p; = Y;/N,i=1,...,N and Q = diag(1/p1, ..., 1/p).

We have here that v/ N (8 —6*) converges in distribution to normal A'(0, I(8*)~') with I(6) =
P(6)C(0)P(0), where P(6) = dlogp(0)/06’ is m x ¢ matrix and C(0) = P(8) — p(6)p(6)’.
The LRT for testing Hp : p = p(0) against the unrestricted alternative is

2log A =2 Ek: Y;l Yi/N
Og A = i 108 ——,
i=1 (0
where 6 is the MLE under Hy. Under Hy, the LRT statistic 2log A converges in distribution to
Xiflf 2 and asymptotically is equivalent to Pearson’s statistic.

11 Logistic regression

Let Yi,...,Yn be independent random variables such that Y; has the binomial distribution
B(m;,m;), i=1,...,N. Consider the logit model:

_ exp(Bo + B1Xi1 + ... + BeXik)
1+ exp(Bo + S1Xi1 + ... + BrXik)’

i=1,..,N, (11.1)

i

where [y, ..., B are parameters. That is

5 .
logl_lﬂ_‘ :BO+51X11++5szk; 1= 17"'7N7
(2
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where 1f§u is called the odds ratio.

We can write this model in the matrix form
n=Xp, (11.2)

where 7; := log 1= - N, and X = [1y, X1, ..., Xk is the design matrix. As in the

linear regression we assume that matrix X has full column rank p = k+1. The multicollinearity

problem can also happen here when columns of the design matrix are ‘almost’ linearly dependent.
We have that

my;

P =) = ("

> W?Z(l - Tri)mi_yi? yi=0,1,....,m;
It follows that the likelihood function here is

Limy) =[] (0 —m)m™

where the constant ¢ = H?:l (7;:

pendent of 7, the log likelihood function log L(7;y) can be written as

) is independent of 7. Hence up to the constant log ¢ inde-

n

(my) = Z [yilog mi + (mi — y;) log(1 — m;)],
i=1

(note that, by definition, 0 x log 0 = 0).
Fisher’s information matrix, for 8 = (B, ..., B)’, can be written in the form X'W X, where
W is a diagonal matrix given by

W =diag{mimi (1 — 71), ..., mpmn(1 — m,) }.

Indeed, we have that
ol Yi — MyT;

6771'1' N 7Ti(1 —7'('1‘)’

and hence
Z Yi — M7y 8771
aﬁs — m 1 — 3,35
where 9
8;: = 7'('2‘(1 — TI'i)XSi.

Consequently the st-element of Fisher’s information matrix is

“loas) = |2 G Gatajan) | =0

Moreover, E[Y;] = m;m;, and hence (by independence)
E[(Y; — mim;)(Y; — mym;)] =0, if i # j,

and
E[(Y; - mim)z] = Var[Yi] = mim(l - ﬂ'i), 1= 1, )
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It follows that

- m; om; Om; "
[Gﬁs 85J ; (=) 0B, 0B, ;mim(l — 73) X5 X

The maximum likelihood (ML) equations are

n
Z(yz - mm’i)Xsi == 0, s = O, ceey k.
i=1
Consider the log-likelihood function I(;y) as a function of & with 7w = 7 (x). We have that the
terms y; log m; are linear functions of «, the terms (m; — y;)log(1l — m;) consist of linear terms
and terms of the form —(m; — y;)log(1 + exp(1 + g'x)). Since the function ¢(x) = log(1 + e*)
is strictly convex, it follows that [(-;y) is strictly concave function of @, and hence the ML
equations for estimating 8 have unique solution 3 (recall that the design matrix in (11.2) is
assumed to have full column rank).
Consider . A A
~exp(Bo + 1 X + o+ BreXik)
1 +exp(Bo + A1 Xit + o + BrXir)
and the following so-called deviance function,

A = =21(;y) + 2(7;y),

where 7 is the ML estimate of w under a specified Hy. That is, A is the log-likelihood ratio test

statistic 2log A for testing Hy. In particular, for Hy : 81 = ... = B = 0 we have that m; = 7,
s ~ Zéil Yi
i=1,...,N, where 7 = S

Ifm;=1,i=1,...,N, then Yj, ..., Yy become Bernoulli random variables with P(Y; = 1) =
m; and P(Y; =0) = 1 — m;. In that case

N
I(msy) = [yilogmi + (1 - y;)log(1 — m;)].
i=1

N .
For Hy : 51 = ... = B = 0 we have that 7; = 7, i = 1,..., N, where 7 = #, and hence

I(m;y) = (vazl yi> log 7.

12 Generalized linear models

Let Y = (Y1,...,YN) be a vector of responses whose components are independently distributed
with means p = (1, ..., un)’, ie., p; = E[Y;], ¢ = 1,...;N. The linear model assumes that
wi = x,B, i = 1,...,N, where B is k x 1 vector of parameters and x; = (1,z;1,...,z;)" are
observed values of the predictors. That is, the conditional expectation E[Y;|X; = x;] = x3,
i=1,..,N.

This can be generalized in the following way. Let us introduce a linear predictor

m=xB, i=1,..,N. (12.1)

The new symbol 7 is related to p by the equation n = g(u), where g(-) is a specified function
called the link function. That is

772 = g(ﬂl)? /l: = 17 "'7N7
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and
i =g H®!B), i=1,..,N.

We also can write it in the matrix form
n = Xpg,

where X is the design matrix with rows (1, X;1,..., X;1), ¢ = 1,..., N. As before it is assumed
that the design matrix has full column rank.

For example, in the linear case n = p, i.e., g(1) = p. In the logistic regression g(7) = log 17—
is the logit link function.

Suppose now that each component Y; of the response vector has a distribution in the expo-
nential family with pdf of the form

y0 —b(0)
a(¢)

for some specified functions a(-), b(:) and ¢(-). The parameter 6 is called the natural parameter,
and the parameter ¢ the dispersion parameter. For example for the normal distribution N (u, 02)

we can write the corresponding density
1 o 2
exp (- (y — p)
2o 202
in the form (12.2) with 6 = pu, ¢ = o and

a(@) = ¢, b(0) = 6%/2, c(y, ) = —3{y*/¢* + log(2m$*)}.

fy(y;0,¢) = exp { + c(y, ¢)} (12.2)

fly) =

If ¢ is known, then a(¢) is viewed as a constant, ¢(y, ¢) = ¢(y), and (12.2) becomes an exponential
family in the canonical form with canonical parameter 6.

Consider 0 b6
I(y;0,¢) =log fy(y.0,¢) = W + ey, 9). (12.3)
By the standard theory of the ML we have that
E[0l/06] = 0, (12.4)
E[0%1/06%] = —E[(d1/06)?]. (12.5)
Also by (12.3)
—b'(0)
a1jo0 = ="
AT
and because of (12.4), E[Y —¥/(0)] = 0. Thus E[Y] = V/(), that is (compare with (7.2))
p="b'(0).
Moreover
0%1/06> = —'(6) a(6)

and hence b"(0)/a(¢) = Var(Y)/a?(¢) and thus (compare with (7.3))

Var(Y) = b'(0)a(e).
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For binomial distribution B(m,m)/m the corresponding distribution function is

m ) ﬂ_my(l _ ﬂ.>m(1*y)7 Y= O, 1/?7’L7 vy 1.
my

Let us set 6 = log "~ as the natural parameter, and hence 7 = —1ig.
—lfreeo. Assume that m is known and set ¢ = 1/m, a(¢p) = ¢, b(#) = log(1l + 69)7
c(y,¢) = log ( my). Note that 0log0 = 0, and hence for m = 1 we have that ¢ = 1 and

m

Here p = 7 and

thus p =

c(y, #) = 0. The link function here is logit g(7) = log ™.
For Poisson distribution

1
PY =y = ?e_uuy, y=0,1,2,...,

with parameter > 0. Note that = E[Y] here. This can be written as

P(Y =y) =exp{ylogp — p —log(y")}, y =0,1,2,...

We have here that p = E[Y] and 6 = log pu is the natural parameter with b() = €, a(¢) = 1
and c(y) = —log(y!). The link function here is g(u) = log u.

In the canonical case (when ¢ is known) the model is 6; = n;, i = 1,...,n, with ; being
linear predictors specified in equation (12.1). In order to compute the ML estimate of 3 we
need to maximize the corresponding log-likelihood function (given in (12.3)), that is to solve the
problem

n
mgx ; Y;zi3 — b(x,3). (12.6)
When b(+) is a convex function, the above problem (12.6) is convex. For the binomial and Poisson
distributions the corresponding functions b(-) are convex.

13 Classification problem

Consider an m x 1 random vector X of measurements. We want to classify X into one of two
population 7 or my. Let pi(x) and po(x) be respective densities (pdfs) of populations m; and
9. Suppose that the probability that an observation comes from population =; is ¢;, ¢ = 1, 2.
Consider regions Ry C R™ and Ry = R™\ Ry. If X € Ry we classify X as from 7, and if
X € Ry we classify X as from 7. Then the probability of misclassification of an observation
from 7y is

Prob(X € Rolm) :/ 1 (@) da.
R>

Similarly the probability of misclassification of an observation from my is [ R pa(x)dx. The
expected loss of misclassification is

01q1/ p1(cc)dw+02q2/ p2(x)dx,
RQ Rl

where ¢; is the cost of misclassification of an observation from m;, i = 1, 2.
Note that

/31 pa2(x)dz = /RM\R2 pa(x)dx = /mpz(a:)dac — /R2 po(a)de.
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Suppose that ¢; = co = 1. Then the probability (expected loss) of misclassification is

¢ /32 p1(x)dx + ¢ /Rl p2(x)dr = /32 [q1p1 () — qop2(z)|dx + g2 /mpz(cc)dzc-

Since pa(-) is a probability density function, we have that [o,, p2(x)de = 1, and hence

Q1/ p1(z)dx + QQ/ p2(x)dx = / [q1p1(x) — gap2(z)|dz + g2.
Rs R Ro
It follows that the expected loss is minimized if
Ry ={x e R : qip1(x) — qap2(x) < 0}.
Or equivalently
R = {a: ER™:pi(x) > Qng(zc)}

and

RQZ{meRm: 1(z )<32P2( )}

If the costs ¢; and ¢y are unequal, then the optimal regions are

R, = {ac € R™ : py(z) > c2q2p2(m)}
C141

and
Ry = {33 ER™:pi(z) < 62%1@(53)} :
1q1
If c1q1p1(x) = caqapa(x), we can take such points either in R; or Rs.
It could be noted that the above derivations basically are the same as derivation of the
Neyman - Pearson Lemma in section 9. The only difference is that the misclassification errors
are treated here symmetrically, unlike in the hypothesis testing.

13.1 Classification with normally distributed populations

Suppose that the populations 71 and 7o have multivariate normal distributions with equal
covariance matrices, i.e., m; ~ N(p;, X), i = 1,2. Then
1 Is—1
pi(x) = WGXP{ —(® — ;) 2@ — ) /2},

and

;( exp{—3[(@ — )TN @ — ) — (& — ) S (@ — o))}

Hence the optimal region is
—{z: (@ —p) T (@ — ) — (& — po)' Sz — py) < —2x},
where k = log(Cqu /c1q1). Equivalently
Ry={a: 'S (g — py) > §(py + 1) 7 (g — ) + 5} (13.1)

Note that if X ~ AN(g;, %), then X'S7(; — py) has normal distribution with mean
S (g — ps) and variance (p; — o) 371y — o). The function X'S 71 (e — o) is called

Fisher’s discriminant function, and \/(ul — o) By — py) is called Mahalanobis’ distance
between p; and fiq.
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13.1.1 An optimization problem

Before proceeding further we need the following result. Consider optimization problem

d Ad
max ——,
d-0 d'Bd

(13.2)

where A is an m X m symmetric positive semidefinite matrix and B is an m X m symmetric
positive definite matrix. Let B 12 pe symmetric positive definite matrix such that B = B 1/2B1/2
(see section 1 for discussion of such functions of symmetric matrices). By change of variables
h = B'Y/2d we can write problem (13.2) as

(812487 1/2)n
max ,
h7#0 1212

where || - || denotes the Euclidean norm. This in turn can be written as

max h (B~ Y2AB'/?)n. (13.3)

Such problems are discussed in section 15.

Matrix B~ Y2AB~1/2 is symmetric positive semidefinite. Let Ay > Ao > -+ > X, be the
eigenvalues and ey, ..., €,, be the corresponding orthonormal eigenvectors of matrix B “12AB-Y 2
i.e., |le;| =1 and e}e; = 0 for i # j. Note that B~'/2e; are eigenvectors of matrix B~* A corre-
sponding to the same eigenvalues \;. This follows from B “12AB 1%, = \e; by multiplying
both sides of this equation by B ~1/2 The optimal solution h of problem (13.3) is the eigenvector
h = e;. Tt follows that solution d; = B~2e; of problem (13.2) is given by the eigenvector of
B! A corresponding to its largest eigenvalue. Note that the optimal solution of problem (13.2)
is defined up to a scale change, i.e., changing d to td does not change value of the objective
function in (13.2) for any nonzero number ¢.

In particular, suppose that matrix A has rank one, and hence can be written as A = aa’
where @ # 0 is an m x 1 vector. Then dy = B~'a is an optimal solution of problem (13.2).
Indeed, in that case matrix B~ A has only one nonzero eigenvalue, the largest one. Moreover,
for A = a’B~'a we have

B 'Ad, = B 'a(d’B™'a) = AB"'a = \d;. (13.4)
It also follows that in that case the optimal value of problem (13.2) is equal to a’ B la.
Next consider the following problem
/

d Ad
max
d+0 d'Bd

subject to d'Bd; = 0. (13.5)

Again by change of variables h = B'/2d we obtain the problem

H1r’1f11||ax1 h' (B~Y2AB~'/?)h, subject to h'e; = 0.

Optimal solution of this problem is the eigenvector es of Bil/2AB71/2, and hence the optimal
solution of problem (13.5) is the eigenvector do = B ~1/2¢4 of B~! A corresponding to its second

largest eigenvalue. Note that dy,Bd; = ese; = 0.
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13.2 Fisher discriminant analysis

Suppose that distribution of population 7; has mean p; and covariance matrix 3;. Consider the
following problem
(d'ny — d'ug)?
ma; d):=———""-"—>. 13.6
d;é())( {g( ) d's1d + d'sod ( )
Note that d'p; is the expected value and d'X;d is the variance of d’X for population ;.
We can write function g(d) as

_ (1 — p2)(u1 — mo)'d
g9(d) = 1d’(212+2132)d .

Hence the optimal solution d of problem (13.6) is (see equation (13.4))

d= (21 + %) (1 — pa). (13.7)
In particular if 31 = By = X, then d = 7' (u; — ps). Recall that the optimal solution of
problem (13.6) is defined up to a scale change.

13.3 Several populations

Suppose that there are r populations my, ..., 7, with respective means g, ..., i, and covariance
matrices X1, ..., 2,. Let ¢; be the probability that the measurements vector X comes from
population 7;, ¢ = 1,...,r (we assume that ¢; > 0,7 =1,...,7). We have that

p=EX]=qp + ...+ arp,

and
EXX']=q(Z1+ mph)- + ¢ (S0 + w1y,
and hence
Cov(X) =B[XX'] — ppt' = aiZi+ Y il — p) (s — ) = Q+ M,
i=1 i=1
where

r T
Q.= Z%Ei and M = Zqz‘(ui —p)(p; — ,u)/. (13.8)
i=1 i=1
Consider the following optimization problem

max {g(d) = d/Md}. (13.9)

deR™ d'Qd

Note that matrices 3; are positive definite and hence matrix €2 is positive definite, and matrix
M is positive semidefinite. Let Ay > Ay > -+ > A, be the eigenvalues of Q 'M. Then the
optimal solution d; of problem (13.9) is the eigenvector of Q7'M corresponding to its largest
eigenvalue )\ (see section 13.1.1). Next maximize g(d) subject to d'Q2d; = 0. The solution of
this problem is given by eigenvector dy of Q1M corresponding to the second largest eigenvalue
A2. By continuing this process we obtain discriminant functions d;X, i =1, ..., — 1. Note that
rank(M) < r — 1 since

Zle qi(p; — p) = Zle qipr; — p = 0.

Hence A, = ... = A\, = 0. For r = 2 we have p; — pp = qa(poq — po), o — 0 = q1(p41 — po) and
hence M = q1q2(pq — po) (1 — o). In that case the above approach is the same as Fisher’s
discriminant analysis.
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13.3.1 Mahalanobis distance

Mahalanobis distance between two vectors @,y € R™, with respect to covariance matrix X, is
defined as

d(@,y) = /(@ -y (@ —y)
Assuming that covariance matrices 31 = .. = X, = 3 are equal to each other, classify X in m;

if d(X, ;) < d(X,p;) for all j # i.

Voronoi diagram. The positive definite matrix X! defines the corresponding norm
|||s-1 := Va'E"te. If ¥ = I, this is the Euclidean norm.

Partition of R™ into regions
Ri = {m : ||m - HiHE*l < ||$ - p’jHE*% ] 7& Z}? = 17 e T

is called Voronoi diagram (with respect to the norm || - ||z-1). Note that each set R; is
polyhedral given by intersection of half spaces

{w: /S (p; — ) <3 (WS — =)}, G A
Mahalanobis distance classification: classify X in 7; if X € R;. For r = 2 this is the same

classification as in (13.1) with ¢; = ¢2 and ¢ = ca.

13.4 Bayes and Logistic Regression classifiers

Suppose that we have two populations m; and 2. We consider (Y, X) with Y =1if X ~ m
and Y = —1 if X ~ my. By Bayes formula we have that

p1(x)q

Prob(Y = 1| X =x) = ,
¥V =1X=2) = e + m@o

where ¢; = Prob(Y = 1) and ¢2 = Prob(Y = —1). We classify X in m if Prob(Y = 1|X =x) >
Prob(Y = —1|X = «), which is equivalent to pi(x)q1 > pa(x)go.
.. . . _ Prob(Y=1|X=x) . .
Logistic regression approach. The ratio odd(x) = Prob(Y=—1X=a) 15 called odds ratio. Lo-

gistic regression model:
logodd(z) = (B + B'z. (13.10)

We classify X in 7 if odd(x) > 1. This is equivalent to 8y + 8’ > 0.

Note that
Prob(Y =1|x =2)  pi(z)q

Prob(Y = —1|x =2) pa(x)g2

In case of normal distributions with the same covariance matrix X we have that (see section
13.1)

= exp {2'Z 7 (g — py) + const} .

In that case (assuming q; = ¢o) equation (13.10) holds with 8 = X7 (py — po).
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14 Support Vector Machines

Suppose that we have two populations m; and w5 . Suppose further that we have training data
(x1,11), -, (®N,yN), where ; € RP and y; = 1 if ; ~ 71 and y; = —1 if &; ~ 2. We want to
separate these populations by a hyperplane 5y + 8’ = 0. That is, we classify an observation
x according to the sign of By + @'z, i.e., we classify ¢ ~ w1 if Sy + B/ > 0, and & ~ my if
Bo + B'x < 0. Then a point (y;, ;) is misclassified iff y;(8y + B'x;) < 0.

The data sets are separable iff there exist Sy and B such that y;(8y + B'x;) > 0 for all
i =1,...,n. The largest margin of separation can be obtained by solving the following problem?®

max ¢ (14.1)
Bo,B, HBH:I

subject to  y;(Bo+ B'x;) > ¢, i=1,...,N. (14.2)

The data is separable iff the optimal value of the above problem is positive. By making change
of variables ¢ = 1/||3||, we can write the above problem as

. 2
min 14.3
iy 5] (119
subject to  y;(Bo+ B'x;) >1,i=1,...,N. (14.4)

Constraints (14.4) define a nonempty feasible set iff the data is separable. Problem (14.3) -
(14.4) is a convex quadratic programming problem, and can be solved efficiently.

If the data sets (classes) overlap we can proceed in a similar way allowing some points to
be on the wrong side of the margin. By introducing slack variables &1, ..., &y we can modify the
constraints y; (8o + B'x;) > ¢ as

yz(ﬁo —|—ﬂ'azz) >c— fz‘, ;= 1, ...,N, (145)

or

where & > 0, i = 1,..,N, and Y | & < const. Similar to (14.3)~(14.4), formulation (14.6)
leads to the following optimization problem

: 2
min 14.7
B0,8,€ sl (

)

subject to y;(Bo + Bx;) >1-&,i=1,...N, (14.8)

&>0,i=1,..,N, (14.9)

Yr &<, (14.10)

where C' > 0 is a chosen constant. The above problem (14.7) - (14.10) is a convex quadratic
programming problem.

Recall that a point (y;, x;) is misclassified iff y;(8y + B'x;) < 0. Therefore if (fy, 3,£) is a
feasible point of the problem (14.7) - (14.10) and a point @; is misclassified, then
0> yi(Bo + Bx;) > 1—¢&;, and hence & > 1. Tt follows that if C is smaller than the min-
imal number of possible misclassifications, then problem (14.7) - (14.10) does not have a feasible
solution. On the other hand, for given 5y and 3 consider the corresponding set of misclassified
points. If C' is equal to the number of misclassifications, then we can take & = 1 for every mis-
classified point and & = 0 for every classified point. This will give a feasible point of problem
(14.7) - (14.10).

®The norm | - || here is the Euclidean norm.
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We can look at the classification problem from the following point of view. Suppose that we
want to find the hyperplane such that the number of misclassified points is minimal. That is,
we would like to solve the following problem

N
min » §( —yi(Bo + B'z;)), (14.11)
Bo.B
where 6(t) = 1 if ¢ > 0, and 6(t) = 0 if ¢ < 0. That is, for given Sy and B the sum
Zij\il 6( — yi(Bo + B'x;)) is equal to the number of misclassified points.
Problem (14.11) is a difficult combinatorial problem. Note that 6(¢) < [1 + t]4, where

[a]+ = max{0,a}. Therefore we can approximate problem (14.11) by the following convez
problem
N
gligZ[l —yi(Bo + B'm)]s + c||8]>. (14.12)
05 i=1
Equivalently we can formulate problem (14.12) as
min HBI2+v 3 & 14.13
min bl +7 5, & (1113)
st. yi(Bo+Bxwi)>1-&, i=1,..,N, (14.14)
&>0,i=1,..,N, (14.15)

where v = ¢ 1.

The Lagrangian of the above problem is

N N
L(Bo, B, & A 1) = 3BIP +7D & =D Milwi(Bo + B'zi) — (1 - &)] Zuza

=1 i=1

The Lagrangian dual of problem (14.13)— (14.15) is the problem
max L(Bo,B,& A, ). (14.16)

A>0,u>0 50,/3 §>0

The corresponding Lagrangian-Wolfe dual is obtained by employing optimality conditions for
the problem of minimization of L(Sy, 3,&, A, i) in (14.16). That is, by setting derivatives of the
Lagrangian to zero, with respect to 3, By, &, we have

N

B = Z)\zyﬂ?z (14.17)
N

0= Z i (14.18)
i=1

)\i:'y—ui, iZl,...,N, (14.19)

By substituting these equations into the Lagrangian we obtain the Lagrangian-Wolfe dual:

N N
max Z)\ ZZ)\ N YiYj Ti (14.20)
i=1 j=1
s.t. 0 g N <7, i=1,..N, (14.21)
N
> Aiyi = 0. (14.22)
i=1
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We also have the following complementarity conditions for problem (14.13)— (14.15):

Xilyi(Bo +B'wi) —(1—&)] =0, i=1,..,N, (14.23)

Given solution A of problem (14.20)-(14.22) the optimal 3 can be computed using equation
(14.17), that is

N
B = Z Y. (14.25)
i=1

The complementarity conditions (14.24) mean that & = 0 if u; > 0, and similarly for the
complementarity conditions (14.23) . By (14.19) we have that u; > 0 if \; < . Therefore by
using equation (14.23), for 0 < A\; < 7 the optimal By can be computed by solving y; f(z;) = 1,
where f(x) = By + B'x.

Suppose now that we want to make classification by using feature vectors h(x;), i = 1,..., N,
where h(-) = (h1(-),.... hq(:)) : RP — R9. We can approach this by solving the corresponding
dual problem with replacing x; with h(x;), ¢ = 1,..., N. That is the objective function in (14.20)

is replaced by
N N N

D XN =) AiNuiyih(m) h(x;). (14.26)

i=1 i=1 j=1

Consequently, by using 8 = 3" | \jy;h(x;) (see (14.25)), the classification is performed accord-
ing to the sign of

N
f(@) = o+ Bh(@) = fo+ 3 Awih(@)'h(z). (14.27)
=1

Both expressions (14.26) and (14.27) are defined by the so-called kernel function

K(z,z) = h(z)h(z) = Y ho(@)hs(2). (14.28)

In terms of the kernel function the objective function (14.26) can be written as

N N N
D=1 ANy K (i, ), (14.29)
i=1

i=1 j=1
and the classifier (14.27) as

N
f@) =Bo+ > AiviK (a0, @) (14.30)

i=1

For example

2
P
K(z,2z) = (1+x'2)* = (1 + Z:cﬂn)
i=1
defines a quadratic separation.

Kernel function should be symmetric, i.e., K(x,z) = K(z,x), and positive definite, i.e.,
for any @1, ..., &, the matrix A = [a;;] with components a;; = K(x;,x;) should be positive
semidefinite, or in other words Z?fj:l AiXjK(z;, x;) should be nonnegative for any x1,...,xp,
and A1, ..., ;. Popular examples of kernels:
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e Polynomial K (z,z) = (1 + z'2)%.

e Radial basis K(z, z) = exp(—||z — z||?), v > 0.

e Hyperbolic tangent K (x,z) = tanh(c; 4+ cox’z), ¢1 < 0, c2 > 0, where tanhx = iiﬁﬁi =
%, sinhz = —isin(iz) = 61_2647 cosh(z) = cos(iz) = ew+h —.

15 Principal Components Analysis

Consider an m x 1 random vector X with g = E[X] and 3 = Cov[X]. Let A\; > --- > A, be
the eigenvalues and ey, ..., e,, be corresponding eigenvectors of 3, i.e., Xe; = \je;, i = 1,...,m.
We assume® that the eigenvectors are orthonormal, i.e., ||e;|| = 1,7 =1,...,m, and ele; = 0 for
i # j. Recall that then (spectral decomposition)

Y = EAE = \jej€| + ... + \nene,,, (15.1)

where A = diag(A1, ..., A) is diagonal matrix and E = [ey, ..., €,,] is orthogonal matrix.
Suppose that we want to find a linear combinations w' X = w1 X7 + ... + w,;, X,,, with largest
variance. That is we want to solve the problem

max Var(w'X). (15.2)
[[wll=1
Note that w'x = ||w]|||x|| cos 6, where 0 is the angle between vectors w and x. If ||w| = 1, then
w'x = ||x|| cosd is the orthogonal projection of vector & onto the straight line in the direction

of vector w. Therefore problem (15.2) can be viewed as finding a direction such that projection

of X onto that direction has the largest variance.
We have that Var(w’'X) = w'Xw and by (15.1)

wIw = w EAE'w = v'Av = \v} + ... + A2, (15.3)
where v = E’'w. Moreover, since matrix E is orthogonal,
vid .. 402 =vv=wEEw=ww=1.

That is, v’Av is a convex combination of eigenvalues );. Thus v’Av is maximized when v =
(1,0,...,0)". Since w = Ew, it follows that solution of problem (15.2) is given by the eigenvector
e, corresponding to the largest eigenvalue of matrix 3. Note that

Var(e) X) = €] Xe; = \1ele; = ;.

Given the first principal component Y7 = €] X, suppose that we want to find Y5 = w'X,
with [|w|| = 1, such that Cov(Y7,Y2) = 0 and Y5 has the largest possible variance. Since

Cov(Y1,Ys) = w'Se; = \jw'ey,
this means that we want to solve the problem

Hmﬁxx w'Sw subject to w'e; = 0. (15.4)
wi|=1

5The norm in this section is the Euclidean norm.
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Again we need to find v which maximizes the right hand side of (15.3) and such that the sum of
its squared components is one, and is orthogonal to vector (1,0, ...,0), i.e., the first component
of v is zero. This is vector (0,1,0,...,0)’, and hence solution of problem (15.4) is es.

And so on, variables Y; = €,X, i = 1,...,m, are called principal components of the data
vector X. Note that Var(Y;) = A\, i = 1,...,m, Cov(Y;,Y;) = 0 for i # j and

D Var(y;) =) Var(X;) =) A = tr(Z).
=1 =1 =1

Note also that vector Y of principal components can be written as Y = E’X. Multiplying both
sides of this equation by F, and since matrix E is orthogonal, we obtain

X =FEY =Yie; +..+Yen. (15.5)

That is, X can be recovered from Y if vectors ey, ..., e, are known. This can be used for
approximation of X by removing from the right hand side of (15.5) terms corresponding to
small eigenvalues \;.

Note that principal components analysis is not scale invariant. That is, suppose we rescale
components of X say by changing units of measurements. So we change X to DX, where D
is a diagonal matrix with positive diagonal elements representing change of scale. Then the
covariance matrix X is changed to DX D. The eigenvalues and eigenvectors of matrix DD
do not have a simple relation to the respective eigenvalues and eigenvectors of matrix 3.

The true (population) covariance matrix 3 is unknown. It is estimated by the sample
covariance matrix

N
S=(N-1)"1) (X;-X)(X; - X). (15.6)
i=1
Therefore the PCA usually performed on the sample covariance matrix .S, or because of the lack
of scale invariance, on the sample correlation” matrix. Let ¢; > --- > ¢, be the eigenvalues
and g, ..., q,, be corresponding orthonormal eigenvectors of S, considered as estimates of the
respective true eigenvalues and eigenvectors. What are statistical properties of these estimates?
In order to apply Delta Theorem we need to compute derivatives of eigenvalues and eigenvectors
considered as functions of symmetric matrices. We are going to discus this next.

15.1 Derivatives of eigenvalues and eigenvectors

Consider the linear space of symmetric m x m matrices, denoted S™*™. Consider A € S™*™
and its eigenvalues A\; > ... > A, and the corresponding orthonormal eigenvectors e, ..., €y,.
Suppose that eigenvalue A; has multiplicity one, i.e., \; is different from the previous eigenvalue
Ai—1 and the next eigenvalue ;1. Then \;(-), considered as a function A; : S™*™ — R, is
continuous at A. Let us make small perturbations of elements of matrix A by adding the
differential dA € S™*™. Then the eigenvalue equations for perturbed matrix are

where d)\; and de; are the corresponding small changes in the eigenvalue and eigenvectors.
Moreover we have that

(A+dA)(e; + de;) = Ae; + (dA)e; + A(de;) + (dA)de;. (15.8)

"The sample correlation matrix is obtained by scaling matrix DSD such that its diagonal elements are equal
one.
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By disregarding the high order terms (d\;)(de;) and (dA)(de;) in (15.7) and (15.8), and since
Ae; = \;e;, we can write

(dA)e; + A(de;) = (d\;)e; + \i(de;). (15.9)
Furthermore up to high order terms
(e; +de;) (ej + dej) = (de;) ej + €}(de;) + €le;. (15.10)
It follows that for ¢ = j, since (e; + de;) (e; + de;) = ele; =1,
e;(de;) =0, (15.11)
and for i # j, since ele; = 0 and (e; + de;) (e; + de;) = 0,
(de;)'ej + €}(de;) = 0. (15.12)

Consequently by multiplying both sides of (15.9) by e} and noting that eje; = 1, e}(de;) = 0
and e, A(de;) = \;e}(de;) = 0, we obtain

d\; = ej(dA)e;. (15.13)
It is also possible to write (15.13) as
d\; = tr(e;e(dA)). (15.14)

Equation (15.13) (equation (15.14)) gives an expression for the linear approximation of the
eigenvalue \; for small perturbations dA of matrix A, i.e.,

Ni(A+dA) =\ (A) +€e;(dA)e; + o(||dA]). (15.15)

The assumption that the eigenvalue is simple is essential in the above derivations.

Now let us compute de;. Note that since it is assumed that the eigenvalue ); is simple and
|lei]l = 1, the eigenvector e; of A is defined uniquely up to sign change from e; to —e;. Since
eigenvectors e, ..., e,, are orthonormal, they form a basis and hence we can write de; as linear
combination de; = cie1 + ... + ¢pey, with ¢ = e;dei, j=1,..,m. For i # j we have by (15.9)

and since e;.ei = 0 that

ej(dA)e; + e} A(de;) = \iely(de;), (15.16)
and since e A(de;) = \;e’(de;) it follows that
eg(dA)el- = ()\1 — )\j)eg(dei). (15.17)
This implies that
¢j =i — ) 'ej(dA)e;, j#i. (15.18)

For j = i we have ¢; = €}(de;) = 0. We obtain the following formula for the differential of e;:

" rel(dA)e;
j=1
J#i

That is, for small perturbations dA of matrix A,

™ e (dA)e;

ei(A+dA)=>" [;(_i] e; + o(||dA])). (15.20)
j=1 v J
J#
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15.2 Elements of matrix calculus

Kronecker product of matrices A = [a;;] and B = [b;;], of respective orders p x ¢ and 7 X s, is
the pr x gs matrix

anB (llzB tee aqu
app=| P B o b
CLplB apr cee a,qu

Vec-operator of p x ¢ matrix A is pg x 1 vector

F
as
vec(A) = )
L Qq
where ay, ..., a, are columns of A.
Note the following matrix identities
(A2 B)(C® D)= (AC)® (BD) (15.21)
and
vec(BXC) = (C' ® B)vec(X), (15.22)

where A, B, C, D, X are matrices of appropriate order. Also for matrices A and B of the same
order p x ¢, and vectors a = vec(A) and b = vec(B),

tI‘(A/B) = Zai]’bij == a'b. (1523)
0,

Let X1, ..., X y be an iid sample of realizations of random vector X = (X7, ..., X;,)’. Assume
that the distribution of X has finite fourth order moments. Let s = vec(S) and oy = vec(Xy),
where 3y = [04;] is the population covariance matrix. Then by the CLT, N 1/2(s — o) converges
in distribution to normal with zero mean vector and a covariance matrix I" of order m? xm?2. Note
that since matrices S and ¥ are symmetric, vectors s and o have not more than m(m+1)/2
different elements, therefore rank(I') < m(m + 1)/2. The typical element of matrix I" is

Clijee = B{(Xi — 1) (X5 — 5) — 03] [(Xp — px) (Xe — pae) — opel }
= E[(Xi — i) (X5 — 1) (Xie — ) (Xe — pe)] — 0450

In particular if X has normal distribution, then
E[(Xz - Ni)(Xj - Hj)(Xk — ) (Xp — MZ)] = 040k + 0041 + 040k,

and hence
[Llij ke = oiroje + 0ie0ji. (15.24)

In a matrix form equations (15.24) can be written as

56



2

where M, is the m? x m? matrix given by

Mm:f mHZ (Hij © Hjj) |,
,j=1

with H;; being m x m matrix with h;; = 1 and all other elements zero. The matrix M, has
the following properties: (i) rank(M,,) = m(m +1)/2, (ii) M2, = M,y,, (iii) for any symmetric
matrix X,

M, (2% =(2®X)M,, and M,,vec(X) = vec(X).

It follows that

15.3 Asymptotics of PCA

Let X1, ..., X 5 be an iid sample from N, (u, ¥) and S be the corresponding sample covariance
matrix. Let \; > --- > A\, be the eigenvalues and ey, ..., e,, be a corresponding set of orthonor-
mal eigenvectors of 3, and ¢; > --- > £, be the eigenvalues and qq, ..., g,, be a corresponding
set of orthonormal eigenvectors of S.

Suppose that \; has multiplicity one. Let us show that N'/2(¢; — );) and NY/?(q; — e;)
are asymptotically normal (with mean zero) and asymptotically independent of each other, and
that the asymptotic variance of N'/2(¢; — );) is 2A? and the asymptotic covariance matrix of
N'/2(q; — e;) is

m

> Bioa e _A eje). (15.27)

J:L]?él
By the Delta Theorem and (15.15) we have that

NY2(0; — \) = €} [NV2(S — Z)]e; + 0,(1),

and hence N'/2(¢; — );) converges in distribution to N(0,02), where ¢ can be calculated as
follows. We have

ej[NV2(S — S)]e; = tr [NV/X(S - D)esef] = [vec(eie))] [N'/(s — )]
and hence

02 = [vec(e;el)]|'T|vec(e;el)] = 2[vec(e;el)] M, (X @ )M, [vec(e;el)].
Moreover, M, |vec(e;e})] = vec(e;e};) and

[vec(eiel)] (T @ X)[vec(esel)] = tr[(e;e))E(eel)X] = (e[ Te;) (e} Te;) = \?

7

Similarly, by (15.20)
Nl/2 Z ajej + op(1
J#i

where

e;[Nl/Q(S —Y)e;

N\ — )\j = ()‘Z - )‘j) [Vec(el )] [Nl/Q(S - U)]

a; =
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The asymptotic covariance between a; and ay, (for j # ¢ and k # i) is

[vec(e;e})|'T'lvec(eey)]  2tr[(ese)) My, X(e;e)) M, X] '

(Ai = Aj)? - (Ai = Aj)?

(15.28)

Also M, (eie);) = j[(ei€e}) + (eje})] and My, (eie,) = 3[(eie)) + (exe})]. It follows that the

right hand side of (15.28) is equal to

tr[((ei€}) + (ej€i))E((eie)) + (exer)) X
2(Ai — Aj)2 ‘

(15.29)

Moreover, we have that e;-Eek = )\je;-ek equals 0 if j # k, and A; if j = k. Therefore the
expression in (15.29) equals 0 if j # k, and A\A;/(A; — A;)? if 5 = k. We obtain that the
asymptotic covariance matrix of aje; is ﬁeje;, and aje; is asymptotically uncorrelated
with agey for j # k. Formula (15.27) follows.

Finally, the asymptotic covariance between n'/2 (¢; — N;) and aj, j # 1, is proportional to

[vec(e;€;)|T[vec(eie))] = tr[(eie;)L(eie) + ejef)X] = 0,

and hence N'/2(¢; — \;) and N'/2(q, — e;) are asymptotically independent.

15.4 Singular value decomposition

Let X be an m x n matrix of rank r (note that » < min{m, n}). Its singular value decomposition
is
X = VDW' = gyviw) + ... + o,v,w),
where V' = [vy,...,v,] and W = w1, ..., w,] are matrices of order m x r and n x r, respectively,
such that V'V = I, and W'W = I, and D = diag(oy, ..., 0,) with oy > --- > 0, > 0. Note
that
XX'=VDW'WDV =VD?V/,

i.e., V.D?V" is the spectral decomposition of the (symmetric positive semidefinite) m x m matrix
X X'. Tt follows that 02, i = 1,...,7, are the nonzero eigenvalues of X X’. Similarly W D?*W’
is the spectral decomposition of the n x n matrix X’X with the same nonzero eigenvalues o2,
1=1,..,7.

For s < r consider the (truncated) matrix X, = VoD;W., where V; = [vy,...,vs], W, =
[wi,...,ws] and Dy = diag(o1, ..., 05), i.€.,

/ /
X =o01viw) + ... + ovw;.

The matrix X is the nearest matrix of rank s to the original matrix X, in the sense of the
difference between the two having the smallest possible Frobenius norm (EckartYoung theorem).
That is, solution of the minimization problem

min || X — Z||r subject to rank(Z) <s
ZERmxn

is Z = X 4. Frobenius norm of a matrix A is

|A|lF = /tr(AA") = /tr(A'A) = 1/Zi7j a%j.
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16 Factor analysis model

Consider an m x 1 random vector X (of measurements) with p = E[X] and Cov(X) = X. The
factor analysis model assumes that

X =p+Af+e, (16.1)

where A is an m X k matrix (of factor loadings), f is a k x 1 random vector (of factors) and
e is an m x 1 random vector (errors). It is assumed that: (i) E[f] = 0 and E[e] = 0, (ii) the
errors are uncorrelated, i.e., Cov(e) is diagonal, (iii) the factors and errors are uncorrelated, i.e.,
E[fe'] = 0.

It follows then that

S=E[(Af+e)Af +¢e)]=APAN + T, (16.2)

where ® = Cov(f) and ¥ = Cov(e). Since it is assumed that the errors are uncorrelated, matrix
W is diagonal. Matrices ® and W are covariance matrices and hence are positive semidefinite.
Since matrix W is diagonal, it is positive semidefinite iff all its diagonal elements are nonnegative.
Often it is assumed that ® = Iy, i.e., the factors are standardized. Then the model becomes

Y= AA + 0. (16.3)

Note that rank(X — ¥) = rank(A) < k. Note also that if T is a k X k orthogonal matrix, then
(AT)(AT) = ATT'A’ = AA’. Therefore the right hand side of (16.3) is defined up to change
of A to AT. This can be viewed as rotation of the row vectors of matrix A by orthogonal matrix
T.

There is a certain similarity between Factor Analysis (FA) and PCA. Both try to explain
covariances between components of the response vector X by a smaller number of factors. But
there are also essential differences, FA is a model and, unlike PCA, is scale invariant. That is,
if D is a diagonal matrix with positive diagonal elements, then rescaling X to DX results in
rescaling ¥ to DXD, A to DA and ¥ to D*W. It is possible to develop a statistical inference
of the FA model (below).

Given data (sample) X1, ..., X y of observations (realizations) of X, FA is performed on the
sample covariance matrix S. That is, S is approximated by matrix of the form 3 = AA + W,
where A is an m x k matrix and ¥ is a diagonal matrix with nonnegative diagonal elements.
If it is assumed that the sample has normal distribution, i.e., X; ~ N, (u, X), it is possible to
proceed to tkle corresponding statistical in_ference. Lgt us show that the ML estimators of p and
Sarep=X and X =N"1Y" (X; — X)(X; — X). Note that & = ¥=LG.

The likelihood function is

N 1
I5—1
L(p,X) = HWGXP{ —(Xi — )BT (X — p)/2}.

=1

Up to a constant independent of p and ¥ we can write logarithm of the likelihood function as
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log L(p,X) = —iNlog|3| -1 (X, — /S H(X; - p)
= —3Nlog|B[ -} o [Z7H X - w)(Xi — w)]

= —1Nlog|Z| - itr®m~!

= —1Nlog|3Z| —;tr{z—l

= —INlog|®| - tr [E7'A] — IN(X — )2 (X — p).

where
N
A=) (X; - X)(X;- X)) =(N-1)S
=1
That is

log L(p, X) = —5Nlog || —

- 2

N =-Dtr [E718] - IN(X — )= HX — p). (16.4)

Since £7! is positive definite, we have that (X — )37 1(X — ) > 0 and its minimum of
zero is attained for g = X. It follows that X is the ML estimator of g. Now in order to find the
ML estimator of ¥ we need to minimize N log |X|+tr [£~"A] over positive definite matrices .
Let A1, ..., A\ be eigenvalues of X371 A (note that since matrices ¥ and A are positive definite,
matrix £ 1A has positive real valued eigenvalues, see section 1). Then

m

Nlog|S|+tr [S7'A] = Nlog|SA ™[ +tr [E'A] + Nlog|A| = > (A — Nlog ;) + Nlog |Al.
i=1

Note that function f(A) = A — Nlog A\ is convex and has unique minimizer A\ = N. It follows

that the minimum is attained when all eigenvalues \; = N, that is 2_1A = NI,,. It follows
that ¥ = N"1A=25-1g O

Assuming that the sample is from normally distributed population, by (16.4) and since the
MLE of p is X, the MLE of parameters A and W of the FA model are obtained by solving the
problem

mi1>1010g ‘AA’ + \IJ| + N - 1tr [(AA + \IJ)AS} ,

AT

where matrix W is diagonal (by writing ¥ > 0 we mean that diagonal elements of ¥ are
nonnegative).

An important question in FA is how many factors should be in the model. The LRT statistic
for testing FA model (16.3), with k factors, is

2log A = NAH\EEO {log |AA" + ¥| —log 13| + tr | (AA + lIl)_lﬁl} — m}

where 3 = %S is the unrestricted MLE of 3. Under Hyj of the FA model with k factors, the
statistic 2log A asymptotically has x2 distribution with v = m(m+1)/2—m(k+1)+k(k—1)/2
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degrees of freedom. In calculation of the degrees of freedom, m(m + 1)/2 is the number of
nonduplicated elements of the covariance matrix, mk+m is the number of estimated parameters
and the last term k(k—1)/2 is the correction because of the possible rotation of the factor loadings
matrix by k& x k orthogonal matrix. Consequently Hy hypothesis of k factors is rejected if the
statistic 21log A is larger than critical value of the y2 distribution.

The above statistical inference is based on the assumption that the population has a normal
distribution. In various applications this assumption can be questionable. Also if the sample
size n is large, this procedure tends to reject Hy even if the FA model gives a reasonable approx-
imation of the sample covariance matrix. Various indexes of fit, with questionable justifications,
were suggested in the literature trying to resolve the question of ‘correct’ number of factors.

17 Kernel PCA

Given data (sample) X1, ..., X y, suppose that we want to represent data in terms of vectors Z; =
h(X;),i=1,...,N, where h(-) = (h1(-), ..., hg(:)) : R™ — R?is a (nonlinear) mapping. Suppose
for the moment that Z = N~! Zfil Z;=N1 Zfil h(X;) is 0. Consider the corresponding
estimator of the covariance matrix in the new feature space

N N
C=N'>2Z2Z;=N"'> hX)h(X,).

i=1 i=1
Let Ay > --- > )\, be eigenvalues and ey, ..., e; be corresponding orthonormal eigenvectors of the
q X ¢ matrix C, i.e., Ces = A\se5, s = 1,...,q. We have that

N
Aes=Cey,=N"'>"Z;Ze,,
=1

and hence (for A\s # 0)

As
where a;s = Zles, s=1,....,q, i =1,..., N. It follows by (17.1) that

1 N
€= 1 Z;az (17.1)
1=

N N N
_ 1 / _ 1 / _ 1 /
Njs = )\S]V,Zi(j;asz]) = 7)\SN j;ajszizj = 7)\3]\7 J;Oéjsh(Xl) h(Xj) (172)

Consider kernel function (compare with (14.28)) K (x, z) = h(z)'h(z). In terms of the kernel
function equation (17.2) can be written as

N
> K(Xi, X ;) = AsNays. (17.3)
j=1

Consider N x N matrix K with components K;; = K(X;, X;), i,j =1,..., N. Equation (17.3)
can be written as
Ka; =M MNag, s=1,...,q, (17.4)

where as = (s, ..., ans)’. That is, ag are eigenvectors of matrix K. These eigenvectors can
be normalized as follows

N N N N
1 1 1
1= e;es = 2Nz < E aiszg> E OszZ;- = N2 E Oéz'sOészQZj = W E aisajsK(Xi,Xj)-
E i=1 j=1 stV stV o
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That is o, Kas = A2N2. Because of (17.4) this implies that o, = A\s V.

In order to apply this PCA procedure we need to compute the eigenvectors of matrix K
corresponding to its largest eigenvalues. This will give us vectors as and numbers A\s;. For a
data point X € R™ its s-PCA component is e,h(X). By (17.1) we have

N N
/ _ 1 A RAY — 1 . .
'h(X) = W ;azsh(Xz) h(X) = W ;%K(X“X).

e

When N~} sz\i 1 h(X;) # 0 we can make the following correction to the matrix K:

K = [h(X;) - N0 k(X)) [R(X;) - NP N h(X))]
= Kij—N'Y) Ky — N Ky + N2 S K

18 Correlation analysis

18.1 Partial correlation

Let X,Y and Z be random variables. Partial correlation between X and Y given Z, denoted
Corr(X,Y|Z) or py, ,, is defined as the correlation between residuals of X and Y regressed on
Z. That is, let us consider regression X on Z. Without loss of generality we can assume that
E[X] =E[Y] = E[Z] = 0. The regression is obtained by solving

minE[(X ~ 527

Solution of this problem is § = Cov(X, Z)/Var(Z) = Corr(X, Z). Hence the partial correlation

1S
xy ~ PxzPyz

z)=—* ,
\/1 o p?{z \/1 o P%,Z
where p,, = Corr(X, Z) and p,, = Corr(Y, Z).
In similar way partial correlation between random variables X and Y given random variables
Z1,Zs, ..., Zy, is defined. That is, suppose that E[X] = E[Y] = E[Z;] = ... = E[Z,] = 0. Consider
the problem

Corr(X,Y|Z) = Corr (X — p,Z,Y — py,

: /! rz\2
n}ng[(X - B'Z)"].

Solution of this problem is 8 = 2212 zx, where X7 is the covariance matrix of random vector
Z = (Z1,...,Zy) and Xxz = Cov(X, Z). Hence

Corr(X,Y|Z) = Corr(X — 2xz8,'Z,Y — Sy;z5,'Z).

18.2 Canonical correlation analysis
Consider random vectors X = (Xi,..,X,) and ¥ = (Y7,...,Y;). Let pu; = E[X] and

Y11 X2

=E|Y], and X =
iy = B[] -
399 = Cov(Y) and X152 = Cov(X,Y). Consider random variables U = a’X and V = b'Y for

some vectors a € RP and b € RY7. We want to solve the problem

} be the covariance matrix of (X', Y’), i.e., ¥1; = Cov(X),

max Corr(U, V). (18.1)

a,b
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Suppose for the moment that X1; = I, and X9y = I,. Then Cov(U,V) = a’E12b and
Var(U) = a’a, Var(V) = b'b. Hence problem (18.1) becomes

'S19b
max —2 122 (18.2)
ab a'avVb'b
Note that for a given vector w, the maximum of w’b subject to ||b|| = 1is attained at b = w/||w]|.

Therefore for given a the maximum in (18.2) is attained at b = 39;a. Hence with respect to a
problem (18.2) becomes

a’31230a a’X239a
max = ; . (18.3)
a va'av/a'312391a a'a

Optimal solution @ of problem (18.3) is given by the eigenvector of matrix 31939 corresponding
to its largest eigenvalue A1, and the maximum in (18.1) is equal to v/A;. Similar the optimal b
is given by the eigenvector of matrix 391315 corresponding to its largest eigenvalue A\;. Note
that

Yo1¥12301a = A\ X914,

and hence b = ¥9;a.
In general let ¢ = E}{za and d = 2%2& Then

a'S12b IO D TS Sl ‘d

JaSay/bSemb Vevdd

Hence the maximum is attained at ¢ given by the eigenvector of 2;11/ 221222_212212;11/ % corre-

sponding to its largest eigenvalue A1, and at d given by the eigenvector of 2;21/ 2221 21_11 301 2;21/ 2

corresponding to its largest eigenvalue A;, and

Corr(U,V) =

d=y3x7"*%,5;"%.

We have that

2SS 2 e = Ae
and ¢ = Z%{Qd. Hence
23125, Bo1a = \a, (18.4)
and similarly
35 3012 B1ab = \ib. (18.5)

Let a1 = @ and by = b, and U; = a/X and V) = b)Y . At the second stage we want to
find Uy = ab, X and Vi = b,Y such that Cov(Us, Uy) = 0, Cov(Va, Vi) = 0 and Corr(Us, V5) is
maximized. Consider ey = Zi{Qag and dy = Z;ézbg. Then

COV(UQ, Ul) = a'2211a1 = 6/22;11/22112;11/261 = 0/261.
Hence Cov(Usa, Uy) = 0 iff ¢he; = 0. Therefore the second stage problem is

I 2y 51/2
max 1 12722 subject to c'c; = 0.

c Vevdd

The maximum is attained at ¢ given by the eigenvector of 21_11/ S ) 3% 21_11/ 2 corresponding
to its second largest eigenvalue As. And so on.
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19 Gaussian Mixture Models

Let y; € {1,..., K} be one of K possible labels for data point X;, i = 1,..., N. Assume that
the pdf of the data f(x;,y;) = f(xi|yi)p(y;), is defined as follows: p(y; = k) =7, k=1, ..., K,
and the conditional distributions f(x;|y; = k) ~ Ny (py, Xi) are normal. The corresponding
log-likelihood function is

ln(0) = Z?:1 log <Z§:1 A X st 2k)> )

where
1

@2z P {—(@— =z —p)/2},

(s p, X) = (on

and 0 = (7, fy, ..., g, 21, ..., D) is vector of parameters.

EM (Expectation-Maximization) algorithm
Initialize the means p;, covariances ¥ and mixing coefficients my, k =1, ..., K.

The Expectation step (E-step) Given current estimates of the parameters my,..., 7,
Piyey By 21,..., K, evaluate (by the Bayes rule) the corresponding posterior probabilities
of data point X; being in cluster k € {1,..., K'}:
X b
Wi = 72@( is i Z) ,i=1,.., N.
Zj:l Ti(x; K, 35

Note that Zk;K:1 w;, = 1 for all 4.

The Maximization step (M-step) For k = 1,...,K, set Ny = Zf\il w;k, and update
TR = Ny /N, ppe? = N PSS wip X, and

N
zpew = Nt Zwik(Xi — ) (X — )"
i=1
Note that Zszl Ny, = Efil Zszl wip = N.

20 Von Mises statistical functionals

Let X1,..., Xy be an iid sample of random vectors with probability distribution (probability
measure) X; ~ F(-). With the sample is associated the so called empirical probability measure
(distribution) Fy=N-1 sz\i 1 0x,, where ¢, denotes probability measure of mass 1 at the point
x. When Xj,..., Xy are random numbers, the empirical cdf FN(x) = w That is, if the
sample is arranged in the increasing order X(;) < --- < X(u, then FN(JJ) =0 for z < X(y),
FN(.%') = 1/N for X(l) <z < X(z), FN({L‘) = 2/n for X(Q) <z < X(3), and so on.

Function § = T'(F) of the distribution F' is called statistical functional. Its sample estimate
is § = T(Fy). Consider the following examples.

e Expectation of a function:



Its sample estimate

e Variance

T(F) = Var(X) = Ep[X? — (Ep[X])2.

Its sample estimate
N N
T(Fy)=N"'> X7 -X?=N"1) (X; - X)~.
i=1 i=1

e Median® it is defined
T(F)=F~1(1/2).

Its sample estimate
T(Fn) = Fy'(1/2).

e Solution of equation Ep[g(X,0)] = 0. Its sample estimate is obtained as solution of
equation Ez_[g(X, 6)] = 0, which is SN g(X;,8) = 0.

It is known (Glivenko-Cantelli Theorem) that the empirical cdf Fjy(z) converges w.p.1 to
F(z) uniformly in = € R, that is sup,cg |Fi(x) — F(z)| converges w.p.1 to 0 as N tends to
infinity. If 7'(-) is continuous (in a certain sense), it follows then that T'(Fly) converges to T'(F)
w.p.1, i.e., § = T(Fy) is a consistent estimator of § = T'(F).

Asymptotic normality Consider probability distributions F' and G. Their convex combina-
tion is

1-tH)F+tG=F+t(G-F), tel0,1].
The directional derivative of T'(-) at F in the direction G — F' is

PE.G - F) — ti DE UG = F) = T(F)
’ 10 t '

That is, T'(F,G — F) is the right side derivative of F} :== (1 —t)F +tG at t = 0. Let G = Fy.
Then

TF, Fy — F) =T <F NN oy — F) — 7 <F NI oy, — F]) :

Suppose further that 7'(F,-) is linear (as a function of the direction), then it follows by the
above that
T'(F,Fy — F)=N"'SN T/ (Féx, — F).

Now we use the following approximation

~ A

N
0—0=T(Fy)—T(F)~T'(F,Fy—F)=N"'> ICrp(Xy),
=1

8Quantile F~!(a), o € (0, 1), is defined by the equation F(x) = a. Solution of this equation could be not unique
or does not exist if the cdf F'() is discontinuous. Therefore the left side quantile is defined as inf{z : F(z) > a},
and the right side quantile is defined as sup{z : F(z) < a}. If the left side and right side quantiles are different
from each other, sometimes their average is taken as the corresponding quantile.
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where

ICrp(@) :=T'(F,6; — F) = lim (O t)FJ;téz) ~T(F)

is the so called Influence Curve (or Influence Function).

Let us note that Er [ICr ¢(X)] = 0. Indeed suppose for the moment that F' has discrete
distribution, i.e., FF =" p;dy, for some x; and probabilities p; > 0. Then

Ep [[C7,p(X)] = Y pilCrp(@:) = Y piT'(F, 0, — F) = T'(F, Y pids, — F),
=1 =1 =1

where the last equality holds by linearity of T'(F,-) and since > ", p; = 1. Since
Yot pidy, = F and T'(F,F — F) = 0, it follows that Ep [ICr p(X)] = 0.

By the above

N
N2 [T(FN) - T(F)} ~ NS ICR(X). (20.1)
i=1
Since Ep [ICr (X ;)] = 0, we have by the CLT that N~Y/23"N 107 (X ;) converges in distri-

bution to normal with zero mean and variance
0t p =Ep [IC7,p(X)?] = Varp [ICr,p(X)].

This suggests that N'/2 [T(FN) — T(F)] converges in distribution to normal A(0,¢?) with
02 = Varg [[C7 r(X))].

These derivations of asymptotic normality of T(FN) are somewhat heuristic since the ap-
proximation (20.1) is not rigorously justified. Nevertheless it usually gives correct results, which
could be proved by ad hoc methods, and is routinely used in applications.

For example, consider the median functional T'(F) = F~1(1/2) (here F is the cumulative
distribution function). Suppose that the (population) median m = F~!(1/2) is uniquely defined
and the distribution has density dF'(m)/dx = f(m) at x = m.

Let us compute the directional derivative T(F, G—F) for some cdf G. Let F} = (1—t)F+tG
and consider T'(F;) = F;'(1/2). We have that Fy(T(F})) = 1/2, i.e.,

(1=t F(T(F)) +tG(T(F)) = 1/2.
Computing derivative of the above with respect to t gives

AF(T(F) AG(T (1)

—F(T(F))+(1—-1) 7 +G(T(F)) +t o =0. (20.2)
At t = 0 we have that F = F' and
dF(T(F)) | _ dT(F}))
dt =0 f(m) dt ‘t:O' (203)
Equation (20.2) (for ¢t = 0) together with (20.2) imply that
dT(F))|  _
F(m) +G(m) + f(m)=_"| =0,
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and hence (since F(m) =1/2)

R R T
We obtain that 1/2 — 6,(m)

/!
ICrp(z) =T (F,0, — F) )
where 6, is the cdf such that §,(¢) =0 for ¢t < z, and §,(¢) =1 for t > x.
Note that Ep [IC7 r(X)] = 0 (as it should be), since Ep [6x(m)] = P(X < m) = 1/2. Also
Varp [0x(m)] =1/2 —1/4 = 1/4 and hence

Varp [[C7,p(X)] = Var;([i);;(m)] B 4f(1m)2'

We obtain that N1/2 [T(FN) — T(F)] converges in distribution to normal A/ (0, W) That is
the sample median has approximately normal distribution with variance W, provided that
the population median m is defined uniquely and the distribution has density f(m) = dF(m)/dx

at £ = m.

For example suppose that variables X; have normal distribution N (u, 0?). In that case the
median m = y. Asymptotic variance of the sample median is N~'o?(7/2), while variance of X
is N~'g2. In that case X is a better estimator of m = .

However, suppose now that X; have Laplace distribution with f(x,60) = %e"z_e‘, 0 € R.
Then 6 is the mean and median of the distribution, and N/2(d — 6) converges in distribution
to normal N'(0,1). We have here that Var(X;) = 2 and hence variance of X is 2N !, while
the asymptotic variance of the sample median is N~!. It is also interesting to note that the
MLE 6 is the sample median. Now 8 log f(x,0)/00 is equal 1 if § <  and —1 if § > z. Thus
0?log f(x,0)/06% = 0 for 6 # =, and 9% log f(x,0)/06? is not defined for § = x. Hence formula
(8.4) for the information number cannot be applied, i.e., the situation here is not standard.

As another example suppose that Y has has Cauchy distribution, i.e., ¥ = V/W with

independent V'~ N(0,1) and W ~ N(0,1). Cauchy distribution has pdf fy(y) = m

Therefore in that case asymptotic variance of the sample median is N~'7%/4. On the other
hand, E|Y| = +00 and the average X has the same distribution as m + Y for any sample size
N, and will not converge to m as N — oo.

Finite sample interpretation of the influence curve. By adding one more observation
Xn41 to sample X1, ..., Xy, we have that

N - 1

— Fo()a ——
N +1 N()+N+1

FN-H(') 5XN+1(') = (1 _t)FN(‘)+t5XN+1(')7

where t = 1/(N + 1). Hence we can write

éN+1 %éN-F ICT,I:_‘N(XNJFl)‘

N +1

This shows sensitivity of the estimator to one observation. If Varp [ICr p(X)] is large, the
estimator T'(F)) can be sensitive just to one observation.
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21 Bootstrap

21.1 Jackknife bias estimation.

Consider an estimator § = (X1, ..., Xn). Denote

A~

0_i=0(X1,... X1, Xip1,-..Xn), i=1,..,N,

i.e., é_i is obtained by removing data point X; from calculation of 0. Let 6 = N1 ZZ]L é_i.
The Jackknife estimator of the bias is (N — 1)(6 — 6). Bias corrected version Jackknife
estimator

A~

fjack =0 — (N —1)(8 — ) = NG — (N —1)(0). (21.1)
Theoretical justification. Suppose that

Eo[f] = 6 + N~ta(6),

i.e., bias bg(d) = N~1a(h), of 0, is of order O(1/N). Then E[§_;] = 0+ (N — 1)~ a(0) and hence

— N! Zn:nz[é,i] — 0+ (N —1)"La(0),
i=1

and thus
E[0 — 6] = N_la(ﬁ) — (N — 1)_1a(0) =[N(N - 1)]_1a(9).

It follows that
E[(N —1)(6 —0)] = —N""a(0),

and hence E[éjack] =0, i.e. 04 is an unbiased estimator of 6.

21.2 Bootstrap method

The idea of resampling used in the Jackknife estimation is further extended in the Bootstrap
method. Let 6 = 6(X1,..., X y) be an estimator which is a function of sample X1, ..., X y.
Suppose that we want to evaluate statistical properties of that estimator without assuming a
parametric model. For example we would like to construct two sided 95% confidence interval for
this estimator. This means that we need to evaluate 2.5% and 97.5% quantiles of the distribution
of §. Note that both quantiles are functions of the true distribution F of the sample. If we knew
the true distribution F' we can proceed by using the so called Monte Carlo samphng techniques.
That is, we generate a sample X1, ..., Xy from F and compute § = 9(X1, ey X ). We repeat
this procedure independently M times. In that way we generate M mdependent replications
01, ... GM of the random variable 6. Consequently for sufficiently large M, we can accurately
reconstruct the true distribution of é, and hence to evaluate the required quantiles, or some
other parameters. For example we can estimate variance of 0 as

. 1 M L2
Var(@)—M_lmzzl@m—e) ;

where § = = M6,
Of course the true distribution F' is not known. So we replace it by the empirical distribution
-1 Z 0x;- Then we proceed by generating a random sample X7,..., X from Fy
and compute 0 = 0( ..., Xy). We repeat this procedure M times to obtain values 67, ..., 0%,
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which can be used to estimate quantity of interest. Generating a sample X7, ..., X from Fxn
means resampling from the data set (sample) X1,..., X . That is, an element X is chosen
at random from the set {X1,..., X y}. This is repeated N times with replacement, to generate
one realization X7, ..., X . So each element of the generated sample X7, ..., Xy coincides with
some element of the original sample X, ..., X y.

This procedure is easy to implement and does not require any modelling assumptions. On
the other hand, it is solely based on the sample (the data) X, ..., X y and can be very sensitive
to outliers. Its theoretical analysis is quite sophisticated and is based of theory of statistical
estimators of functionals § = T'(F).

22 Robust statistics

Let p: R — R4 be a convex function such that p(0) = 0. Consider the problem

n}ginE [p(X = 0)].

For example if p(t) = t? this becomes the least squares problem, its solution is #* = E[X].
Another example p(t) = |t|. In that case solution 6* is the median of the distribution of X.
The sample median is much less sensitive to outliers than the average. Another example which
tries to combine local efficiency of least squares with robustness of absolute value deviations is
p(t) =t for |[t| < 2, and p(t) = [t| + 2 for |t| > 2. So when observation in the interval [—2, 2] it
works like least squares, outside that interval it could deal with outliers as the absolute deviation
method.
As another example for a € (0, 1) let

[ —(—-a)t if t<0,
palt) = { at  if t>0. (22.1)
Consider the problem
min E[ps (X — 6)]. (22.2)
0cR

We have that
OE[pa(X — 0)]/06 = E[dpa(X — 6)/06)]

with 0pa(X —0)/00 is equal to (1 — ) for X — 6 < 0, and —a for X — 6 > 0. Suppose that
F(z) is continuous at z = 6. It follows that

OE[pa(X — 0)]/08 = F(6) — o,

where F'(z) = Prob(X < z) is the cdf of X. Thus the quantile § = F~1(«) is the optimal solution
of problem (22.2). In particular for o = 1/2, p,(t) = 3|t| and solution of problem (22.2) is the
median of the distribution. As it was discussed in section 20, the left side inf{z : F/(z) > o}, and
the right side sup{z : F(z) < a} quantiles can be different from each other. In that case optimal
solution of problem (22.2) can be any point between the left side and right side quantiles.

22.1 Quantile regression

Quantile regression use function p,(+), defined in (22.1), to fit linear model to the data. That
is, consider the problem

Jmin Elpu(Y — 5X)) (22.3)
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where Y and X = (1, X1, ..., X;)' are random variables. Given data Y; and X; = (1, X;1, ..., Xi1)',
i=1,..., N, the sample counterpart of problem (22.3) is

N
min Y, — 8 X,), 22.4
BER’““;[)Q( i — B X,) ( )
The solution 3 of problem (22.4) can be viewed as an estimator of the solution of problem (22.3).
For a = 1/2 this becomes the least absolute deviations method for solving linear regression. Both
problems (22.3) and (22.4) could have more than one optimal solution.

Problem (22.4) can be written as the linear program

N
min > (1 —a)v; +av;
Butv- =1
st. Y, —-pfX,=vl —v,i=1,..,N,

v; >0,v>0,i=1,..,N.
It is possible to show that under some regularity conditions, in particular if Y has pdf fy (-),

VN (B — B) converges in distribution to normal with zero mean vector and covariance matrix
a(l — )T 1QU ! with ¥ = E[fy (4 X)X X'] and Q = E[ X X'].

23 Bayes estimators

Recall Bayes’ formula: if {A4;} is a partition of the sample space and B is an event such that
P(B) # 0 then
P(B|A;)P(4;)
P(A;|B) = )
> P(B|A;)P(4A;)
Let X = (X1,...,Xn) be a sample with X ~ f(x,0). Suppose that 6 is random with
pdf m(0), referred to as the prior distribution. Denote by f(x|6) the sampling distribution

conditional on 6. Then the joint distribution of X and 6 is f(x,0) = f(x|0)n(0). By Bayes’
formula, the distribution of 8, conditional on X = «, is

f(x|6)7(6)
m(0|z) = : 23.1
)= T i(aloyr(0)do .
that is 7(@|x) is proportional to f(x|0)m(6), written w(0|x) o f(x|0)w (). The distribution
(pdf) 7(6|x) is called the posterior distribution.

Example 23.1 Suppose that X; ~ N(6,02) and 6 ~ N (i, 72), where 02, ;1 and 72 are supposed
to be known. We have that

1 N 2/9.2 1 2 /9.2
Nm(0) = —— e~ 2im(@i=0)*/20% __—  —(0—p)*/27 ,
falf)m () ( 27T0')N€ \/2777'6

and hence

2
g T et
N72402

o272
2 < Nt2+02 )

It follows that the posterior distribution 7 (f|x) is normal with conditional mean

f(@|0)m(6) o< exp

72 - o?/N
T
72 +02/N 7'24—02/]\7#

E[f|x] =
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and conditional variance

(02/N)T?

o2/N + 12’

Note that E[f|x] — Z tends to 0 and Var(f|z) tends to 0 as N — oco. That is, if we view the
‘true’ distribution of the sample as normal with mean #* and variance o2, then the average X
converges in probability to 8%, and the Bayes estimator converges in probability to 6%, i.e. for any
e > 0 the probability Prob(|m(f|x) — 6| > ¢) converges to 0 w.p.1 as N — oco. The probability
is with respect to the true distribution of X; and the convergence w.p.1 is with respect to the
true distribution.

Var(f|x) =

This is a general property of Bayes estimators. If we assume that the true distribution
of the sample X;, i = 1,..., is f(z,0*) for some 6* € O, then (under some regularity
conditions) Bayes estimator converges in probability to 8* for almost every (with respect
to the true distribution) sequence Xi, ... .

In general it may be not easy to compute the posterior distribution. The problem is in
calculation of the integral in the right hand side of (23.1). In the above example it was possible
to compute the posterior distribution in a closed form, and the posterior distribution was in the
same family of normal distributions. Such families of distributions are called conjugate families.

Example 23.2 One parameter exponential family
f(210) = exp [n(0)T(z) — A(6)]h(z),
with prior
7(6) o< explan(b) — BA(0)].
Then posterior distribution
FO)2)m(0) o< exp [n(0)(T(x) + ) — (8 + 1) A(6)]

is in the same family of one parameter exponential distributions. O

23.1 Bayesian decisions

Consider a loss function L(8,a) (see definition 8.5) and let 6(X) be a decision rule, e.g., §(X)
is an estimator of parameter 8. The corresponding risk function is

R(8,5) = Eg[L(8,6(X))] = /L(O,é(m))f(sc,e)da:.

For example, let L(0,a) = (6 — a)?. Then
R(6.9) = Eq|(6 — 5(X))*) = Varg(8(X)) + (E[5(X)] )
—_———
bias(d(X))
is the Mean Square Error of the estimator §(X) of 6.
Bayes risk, with prior 7(0):

B(r,0) = EL[R(8,6)] = / R(6, 5)r(6)d0 — / ( / L(6.5(x))f (2]6)dz ) =(0) b
The Bayes rule with respect to the prior 7(0) is

0™ € argmin B(m,0), (23.2)
0eD

where D is a family of decision rules.
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Theorem 23.1 Define
r(x,a) = /L(O,a)ﬂ(9|ac)d0,

and let 6™ (x) be a minimizer of r(x,a), i.e., 6"(x) € argmin, r(x,a). Suppose that 6™ € D.
Then 0™ is the Bayes rule with respect to .

Proof. Denote m(z) := [ f(a|0)m(x). We can write
/ ( / L(9,8(x))f (x(6)dz ) w(6)do
- / / L(0,6(x)) f (|6)(0)dadd
= / / L(6,5(x))m(0|x)m(z)dbda

_ //r(m,é(a:))m(m)dw.

Since 07 (x) € argmin, r(x, a), we have that for any 6 € D,

r(x, 0" (x))m(x) < r(x,é(x))m(x).

B(m, )

It follows that 6™ is a minimizer of B(m,d) over ¢ € D, provided §™ € D. O

For squared error loss L(#,a) = (6 — a)?, we have

r(x,a) = /(0 — a)*n(0|x)db,

and hence
0" (x) = /97r(0|ac)d9 =E;[0|X = ]

is the posterior mean. For the absolute error loss L(6,a) = |6 — al, the Bayes rule §™(x) is the
posterior median.

Definition 23.1 It is said that decision rule ' is as good as 0 if R(6,8") < R(8,0) for all 0 € ©.
Moreover, if R(6,0") < R(0,8) for some 6 € ©, it is said that &' is better than .
A decision rule 5 € D is admissible if there is no 8’ € D that is better than 6.

The following example shows that an admissible decision rule can be quite awkward.

Example 23.3 Suppose that X has Binomial distribution Bin(n,#), i.e., for x = 0,1,...,n,
P(X =x)= <Z) *(1—0)""* 60 € (0,1).

Let () = ¢ for some constant ¢ € (0,1) and all z = 0, ...,n, and L(6,a) = (§ — a)? be the loss

function. Then .

R(c,6) =Y (5(x) — ¢)’P(X = z[f = c) = 0.
=0
Let 0’ be as good as §. Then
0<> (8'(x) — 0)’P(X =20 = ¢) = R(c,8') < R(c,6) = 0.
x=0

Therefore §'(x) = ¢ for all z =0, ...,n, and hence ¢’ = 4. It follows that ¢ is admissible. O
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Theorem 23 2 Suppose that R(8,0) is continuous in 6 and for every 6 € © there is e > 0 such
that fV 7(0)d0 > 0, where V. g = {60’ € © : ||0' — 6| < &} is the € - neighborhood of 6. Then 6™

s an admzsszble decision rule.

Proof. We argue by a contradiction. Suppose that § € D is a decision rule which is better
than §™. Since

0" € argmin B(, 0) —argmm/R (6,0)r
6€D 6€D

we have that
0 > / R(6,57)(8)d6 — / R(6,5)7(6)do
= / [R(6,6™) — R(6,6)|7(8)d6.
On the other hand, since J is better than 7,
R(6,6™) — R(6,6) >0, VO € 0O,

and there is a point * € © such that R(6*,0™) — R(6*,9) > 0. Since R(6,0) is continuous in
0, there is a neighborhood Z of 6* and v > 0 such that R(0,0™) — R(8,9) > ~ for all 6 € =.
By the assumption of the theorem there is € - neighborhood V' of 6* such that V' C = and
fv 0)de > 0. It follows that

/[R(e, 5™) — R(6,5)]n(6)do > 7/ 7(6)d6 > 0.

|4

This gives the required contradiction. ([l

Let T(X) be a sufficient statistic for 8, and let L(6,a) be a loss function. Suppose that
L(6,a) is convex in a for all 8. Consider 6*(¢) = E[6(X)|T = t]. Note that by sufficiency of T,
0*(t) does not depend on 0. Since L(0,a) is convex in a, we have by Jensen inequality

E[L(0,6(X)|T] = L(6,E[6(X)|T]) = L(6,0"(T)).
It follows
R(8,5) = Eg[E[L(6,6(X))|T]] > Eq[L (0, E[5(X)|T])] = Eg[L(6,5(T))] = R(6,6%).

That is, 6* is as good as §. Therefore if § is admissible, then §* is also admissible.

Minimax decision rules. Consider

§ € argmin { sup R(0, 5)}
0eD 6co

That is, decision rule ¢’ is minimax if
sup R(6,6") = inf {supR 6,0 }
6co (6.9) 6eD L geco (6:9)

Theorem 23.3 Suppose that § is a unique minimaz decision rule. Then § is admissible.
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Proof. Consider ¢’ € D. Then since § is minimax

sup R(6,4") > sup R(8,9).
6co 6co

Moreover since ¢ is unique we have, that if 8’ # ¢, then

sup R(0,8") > sup R(8,9),
6co 0co

i.e., ¢ is not better than §. It follows that ¢ is admissible.

How minimax decision rules are related to Bayes rules.

Proposition 23.1 If

sup R(6,6™) < B(m, "),
6cO

then 67 is a minimaz decision rule.

Proof. If §™ is not minimax, then for some §’

sup R(6,8") < sup R(8,67).
6coe 0co

For any prior m(0) we have

B(r,0) = / R(6,5)7(6)d0 < sup R(8, ) / (6)d0 = sup R(8, ).

6co 6co

Hence then

B(r, ') < sup R(8,') < sup R(6,67) < B(m, "),
6O 0cO

which contradicts minimality of 6™ for B(mw,-).

Saddle point

Consider problems

ma min 9(z, ),

gg(lglea;cg(wvy),

(23.3)

(23.4)

where X and Y are nonempty sets and g : X XY — R is a real valued function. We have

that for any (z/,y) € X x Y,

/ — . / < / / < / — /‘
Y(y') gg;gg(w,y)_g(w,y)_r;leagg(af,y) o(x')

It follows that

< mi .
max ¥(y) < min(z)

Therefore we have that

. o
I;leaggggg(m,y) < min r;leagg(x,y),

(23.5)

i.e., optimal value of problem (23.3) is less then or equal to the optimal value of problem

(23.4).
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Now suppose that ¥(7) = ¢(z) for some (Z,y) € X x Y. By (23.5) this implies that
optimal values of problems (23.3) and (23.4)are equal to each other and

y € argmaxy(y) and T € arg min p(x).

yey reX
That is
T fd T.U) = 1 7] . 2 .
r;leagg(x,y) 9(z,9) = ming(z, g) (23.6)

A point (z,y) € X x Y satisfying the above condition (23.6) is called saddle point.
Let (z,y) € X x Y be a saddle point. Then

p(T) = r;leagg(f, y) =9(z,9) = ggggg(m, y) = ¥(y).

It follows that if a saddle point (Z,y) exists, then the optimal values of problems (23.3)
and (23.4) are equal to each other, 3 is an optimal solution of problem (23.3) and Z is an
optimal solution of problem (23.4). Conversely if the optimal values of problems (23.3)
and (23.4) are equal to each other, and ¥ is an optimal solution of problem (23.3) and z
is an optimal solution of problem (23.4), then (Z, %) is a saddle point. O

Spherical and elliptical distributions

An m x 1 random vector X is said to have spherical distribution if X and T'X have the same
distribution for any m x m orthogonal matrix T.

Examples

(i)

(i)

(iii)

Normal distribution X ~ N, (0, 0%I,,). The corresponding density function

1
f(z) = (@ro2)nl2 exp (—30~

2CC/IB) .

e-contaminated normal distribution, with pdf (1 —¢) fi(x) + e fa(x), € € [0, 1], where f;(+)
is pdf of N;,(0,021,,),i=1,2.
Multivariate t-distribution with n degrees of freedom. Its pdf is

i (n+m)] 1
L(in)(mn)™/2 (14 n=la'z)+m)/2’

flx) =

where I'(t) = [(¥ ' 'e~*dz. This is distribution of random vector X = Z=12p1 2y
where Z ~ x2 and Y ~ N,,(0,I,,), and Z and Y are independent. This is the multivariate
counterpart of ¢-distribution with n degrees of freedom.

Spherical distributions can be generated in the following way. Let Xj,..., X,, be random
variables such that conditional on random variable Z > 0, Z ~ G(-), these variables are iid
N(0,Z). Then the pdf of random vector X = (X7, ..., X;,)" is

f(x) = /000(2772)’”/2 exp (—iz7'2'z) dG(2).
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This is scale mixture of normal distributions. In particular, if Z can have two possible values
o? and o3 with respective probabilities 1 — ¢ and e, then this is the e-contaminated normal
distribution. If Z ~ n/x2, then X has m-variate t-distribution with n degrees of freedom.

Recall that the characteristic function of a random vector X is ¢x (¢) := Elexp(it' X )], where
i? = —1 and € = cos@ + isinf. If X has spherical distribution, then X and T'X have the
same distribution for any orthogonal matrix T' and hence

o (t) = Elexp(it X)] = Elexp(it'TX)] = Elexp(i(T) X)] = 6 (T")
It follows that ¢x(t) is a function of t't, i.e.,
dx(t) = (') (24.1)

for some function 9 (-) of nonnegative real valued variable. Conversely suppose that the char-
acteristic function of a random vector X can be represented in the form (24.1). Then for any
orthogonal matrix T' the characteristic function of X is the same as the characteristic function
of T X and hence they have the same distribution. It follows that distribution of X has spherical
distribution iff the characteristic function of X can be represented in the form (24.1).

It is said that an m x 1 random vector X has elliptical distribution with parameters g € R™
and symmetric positive definite m x m matrix V' = [vj;]; j=1,...m if its pdf is

f@)=cn|VITV2h (@ — p) V(@ — p))

for some function h : R — Ry. The constant ¢, > 0 is adjusted in such a way that [ f(z)dx = 1.
We use notation X ~ E,,(u,V) for elliptical distributions. Note that X ~ E,,(u, V) iff
Y = V~/2(X — p) has spherical distribution.

If X ~Ep,(p, V), then X = p+ V/2Y where Y has spherical distribution, and hence its
characteristic function can be written as

ox(t) =E [exp (it (p + VI/QY))} = exp(it' p)Elexp (it VV/2Y)).
Since Y has spherical distribution we have by (24.1) that
Elexp(it' VY/2Y| = ¢ ((VY28) (V%)) = (' VH).

That is, the characteristic function of X ~ E,,(u, V') can be represented in the form

bx () = exp(it p) U (E'VE) (24.2)
for some function ¥(-). If X ~ N,,(p,X), then by equation (2.2),
ox(t) = exp(it’ u — t'St/2). (24.3)

In that case 9(u) = e~*/? for u > 0 with V = X.
Let X ~ E,,(u, V) and A be an k x m matrix of full row rank k. Then random vector
Y = AX has characteristic function

oy (t) = Elexp(it' AX)] = Elexp(i(A't)’ X)] = ¢px (A't) = exp(it’ Ap)y(t AV A't).

It follows that Y ~ Ej(Au, AV A’). In particular let X be partitioned X = , with the

X

X9

corresponding partitioning of pu = Pl and v = Vi Vi , where X7 is m; x 1 and
o Vo Voo

X5 is mg x 1 subvectors of X. Then X ~ E,,, (11, V11) with the characteristic function

dx, (t1) = exp(ity ) (t) Viity), (24.4)
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and similarly for Xs.
Now suppose that components of random vector X = (X7, ..., X,;,) have finite second order
moments. Then

96 (0)/dt = iE[X] (24.5)

and
0*¢x(0)/0tot = —E[X X'] = —pup/ — Cov(X). (24.6)

It follows from (24.2) together with (24.5) and (24.6), that if X ~ E,,(u, V), then E[X] = p
and Cov(X) = oV, where a = —2¢/(0). In particular this implies that

Corr(X;, X;) = Yy j=1..m. (24.7)

By (24.7) we have that if X ~ E,,(u, V) and V' = diag(v11, ..., Umm) is diagonal, then X1, ..., X,
are uncorrelated.

Theorem 24.1 Let X = (X1,....,Xn) ~ En(p, V), m > 2, and V = diag(vi1, ..., Vmm). If

X1, ..., X;n are all independent, then X has multivariate normal distribution.

Proof. By replacing X with X — pu, we can assume without loss of generality that g = 0. Since
matrix V = diag(vii, ..., Umm) is diagonal we have by (24.2) that the characteristic function of
X is

ox(t) = p(E'VE) = ¢ (0, thva) -

Since X7, ..., X,, are independent, we have that

¢x(t) = Elexp(it' X)] = E [[[}2, e ] = [I7L, E [ ] = T2, ilta),

where ¢;(t;) is the characteristic function of X;, i = 1,...,m. By (24.4), ¢;(t;) = ¥ (t7vi;), and

thus it follows that
o (T uf) =TT, v (), (24.8)

1/2
where u; := t;v; /

In turn equatlon (24.8) implies that 1(u) = e **“/2 for some s and u > 0. Indeed suppose
that equation (24.8) holds. Then for any natural number p, (1) = ¥(1/p + ... + 1/p) =
¥(1/p)? and hence 1(1/p) = 1(1)*/P. Furthermore for a rational positive number ¢/p we have
¥(q/p) = v(1/p + ... + 1/p) = %(1/p)?. Tt follows that 1(q/p) = ¥(1)¥/? for any positive
rational number p/q. Moreover since function #(:) is continuous, it follows that for u > 0,
Y(u) = (1) = e *%/2 for k := —2log¥(1). Since Cov(X) = oV, where a = —2¢'(0), we have
then that Cov(X) = kV/, and hence x > 0. It follows by (24.2) that the characteristic function
of X is ¢x(t) = exp(—kt'Vt/2). That is, the characteristic function of X coincides with the
characteristic function of normal distribution with mean vector g = 0 and covariance matrix

YX=kV. g

24.1 Multivariate cumulants

Consider a random variable X. Let

log E[e*¥] Zmn — (24.9)
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be Taylor expansion of its log-moments generating function (note that for ¢ = 0 this function is
0). The coefficient r,, is called n-th cumulant of X. Since E[e!*] may not exist for ¢ # 0, it is
preferable to define cumulants in terms of the characteristic function as

i o~ (it)"
log E[e™X] = Z Rn =1 (24.10)

n=1

0" log E[e?tX
where k,, = %’t:o‘

Denote piy, := E[X*] the k-th moment of X. Then

k1 = w =E[X],

ke = pg—pi = Var(X),

K3 = 3 — 3uips + 203,

Ko = pa — 4dpipg — 3p3 + 120003 — 6,

provided these moments are finite. If X and Y are two independent random variables, then
log E[e*™X*Y)] = log E[e"X] + log E[e"Y],

and hence cumulants of X 4+ Y are equal to the sum of the respective cumulants of X and Y.
In particular, if Y = a where a is (deterministic) number, then the first cumulant of X + a is
k1 + a, and the cumulants of the higher order are the same as the cumulants of X.

Skewness of X is defined as .
3

M= 5 (24.11)

Ko

kurtosis of X is defined as K
Y2 = 5. (24.12)

K3

As it was pointed above, the skewness and kurtosis of X are the same as the respective skewness
and kurtosis of X + a for any number a. If distribution of X is symmetrical around its mean,
then y; = 0. If X ~ N(0,0?%), then py = 313 (see equation (2.4)). It follows that if X ~ N (u,0?)
then its kurtosis yo = 0.

Consider now random vector X = (X1, ..., X,,)". Let ¢;(t;) be the characteristic function of
X;. The cumulants of X; are defined by

(e}

; (it)"
loggbj(tj) = Zﬁn ol
n=1 ’
Mixed cumulants: -
. it )™ (ity)"2
log ¢]Z(t]) té) = Z HiLél’nzM)

n1!ns!
ni=1,n2=1 12402

and so on.
Suppose that X ~ E,,(u, V') has elliptical distribution. Then marginal distributions of X
have zero skewness and the same kurtosis

j_ 3[Y"(0) — ¢'(0)?]
T2 = wl(0)2 .
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Denote k := 7%/3. Forth order cumulants of X ~ E,,(u, V') are
ikl
ki = K(0ij0ke + 0ik0oje + 0o ).
Let S be the sample covariance matrix of sample of size N. By the CLT we have that
Uy = N'/?(8 — X) converges in distribution to normal with zero mean and covariances

_ igkt ik gl il gk
Cov(uij, uge) = kyyyy + K11k + K11k -

If X has normal distribution, then £ = 0 and

Cov(uij, ure) = 0300 + 0300 ji;.

2 2

Denote by T'nr the corresponding m® x m* covariance matrix (see section 15.2), where the
subscript A/ emphasizes that this is under the assumption of normal distribution. For elliptical
distribution, N'/2(s — &) converges in distribution to normal with zero mean and m? x m?
covariance matrix I' with

T = (1+ &)Ly + koo’

25 Wishart distribution

Recall that
;XN
S = N—l;(XZ X)(X; — X)
1=
is the sample covariance matrix of random sample X1,..., Xn. Note that if X1,...,Xn is an
iid sample from normal distribution N,,(pu, ), then X and S are independent. Indeed

Cov(X,X; — X) = Cov(X, X;) — Cov(X).

Now Cov(X,X;) = N7'% and Cov(X) = N 22N Cov(X;) = N7IZ. It follows that
Cov(X,X; — X) = 0. That is, X and X; — X are uncorrelated, and because their joint
distribution is normal, are independent. Since S is a function of X; — X, i = 1,..., N, it follows
that X and S are independent.

Let Z1,..., Z, be an iid sequence of random vectors having normal distribution N, (0, ).
Consider random matrix

A=7.Z"+..+ 2,7, (25.1)

By definition A has Wishart distribution, denoted A ~ Wy, (n, ¥). In particular, for m = 1 and
Z; ~ N(0,0?), the corresponding A/o? has chi-square distribution with n degrees of freedom.
Wishart distribution has the following properties.

(i) If A ~ Wy,(n,X) and o > 0, then A ~ W, (n,aX). Indeed,
aA = (a'2Z)(a*?Z)) + ...+ (aV?Z,)(a"?*Z,)
and o'/2Z; ~ N'(0,0X).

(ii) If A ~ W,,(n,X) and B is m x k deterministic matrix, then B’"AB ~ Wj(n, B'XB).
Indeed,
B'AB = (B'Z\)(B'Z,) + ...+ (B'Z,)(B'Z,),

and B'Z; ~ N'(0, B'SB).
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(iii) Equation (25.1) can be written in the following form A = Z'Z, where Z is n x m matrix
/

Z
Z=| - | with Z'=[Zy,...,Z,). Note that E[Z] = 0 and the covariance matrix of the
zy,
corresponding mn x 1 vector vec(Z') is®
Cov(vec(Z)) =1, ® X. (25.2)

Proposition 25.1 Let X1,..., Xy @Nm(p,, ¥) and S be the sample covariance matriz. Then

S ~ Wp(n,n= %), where n =N — 1.

Proof. Consider N x m matrix W with rows X; — X, ie.,, W' =[X; - X,..., Xy — X].
Note that § = n " 'W'W and W = (Iy — N~ !'151) X, where X' = [X1,..., X y]. Matrix
Iy —N’11N1§\, is a symmetric projection matrix of rank N —1. Hence I —N’11N1§\, = HH',
where H is N x n matrix with H'H = I,, and H'1y = 0 (spectral decomposition). Consider
the following n x m matrix Z = H'X. Then

Z'Z=X'HH'X = X'(Ixy — N '1y1\)) X = W'W,

and hence S = n~1Z’Z. Note that E[X] = 1yp’ and hence E[Z] = H'E[X] = H'1yp' = 0.
Now Cov(vec(X')) = Iy ® ¥ and (see (15.22))

vec(X'H) = (H' @ I,,,)vec(X’).
Thus using (15.21),
Cov(vec(Z')) = Cov(vec(X'H)) = (H' @ I,)IN®Z)H®I,)=(HH) 9X=1,® 3.
Hence Z'Z ~ Wy, (n, %), and S ~ Wy, (n,n"1%). O

Theorem 25.1 If A~ W,,(n,X) andY is an m x 1 random vector independent of A and such

that Prob(Y = 0) = 0, then random variable {,;‘g;’ ~ X2 and is independent of Y .

Proof. Conditional on Y, we have that Y'AY ~ Wi(n,Y'2Y') and hence

Y’ Ay 9

S — ~ Wl(na 1) = Xn-
That is, the conditional distribution of g;g)}; does not depend on Y. It follows that ¥;g¥ is
independent of Y and its (unconditional) distribution is x?2. O

Together with Proposition 25.1 this implies the following.
Proposition 25.2 Let Xq,..., XN o N (e, ) and S be the corresponding sample covariance

matriz. Then 7;(}2/’5)%2 ~ x2 and is independent of X (recall that n = N —1).

Proof. Since S and X are independent and nS ~ W, (n,X), the result follows from
Theorem 25.1. ]

9Recall definitions of Kronecker product of matrices and vec operator discussed in section 15.2.
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A1l A12
A21  A22
k x k and Aay is of order (m — k) x (m — k), and matriz 3 is partitioned accordingly ¥ =

[ zll 212 } . Consider Ay = A1y — A12A5) Ay and B115 = B11 — $1955; o1 Then
21 322

Theorem 25.2 Let A ~ Wy, (n,X) be partitioned A = [ ], where A11 is of order

Aqro ~ Wi(n —m+k,Xq1.2), (25.3)
and Ai1.9 is independent of Ass.

Proof. Since A ~ W,,(n,3) it can be written in the form (25.1), or equivalently as A =

7y
Z'Z, where Z = . is the respective n x m matrix. Let us partition Z = [Zl, 22], where
z,
z Zy
Z 1 is of order n x k and Zs is of order n x (m—k). Note that Z, = . and Zy = . ,
Z1, Zoy,
where Z; = Zh are respective partitions of vectors Z;, ¢ = 1,...,n. Recall that conditional
2i

on Zg; = z2,
Z1i ~ N (21235, 22, B11.2) (25.4)

(see equation (2.3)). Note that matrix I,, — 22(2/222)_12/2 is idempotent (projection) of rank
n—(m-—k)=n—m+k, and

(I, — Z4(Z575) " Zy)Z = 0. (25.5)
Because of (25.4) and (25.5) we have that conditional on Zs,
le[In — 22(2/222)712/2]21 ~ Wk(n —m+k, 211_2).
Moreover
le[In — 22(2;22)712;]21 = 2/121 — 2/122 (2/222)71 2/221 = Aq19.
——
A A, A;zl A

It follows that the ~(unconditional) distribution of A1y.9 is Wi(n —m+k,31;12), and that Aqq.9
is independent of Z9 and hence of Ago. O

Theorem 25.3 Let A ~ W,,(n,X) and B be (deterministic) m x k matriz of rank k. Then
(B'A'B)™' ~ Wi(n—m+k,(B'Z71B)7).

Proof. Note that the assertion is invariant under linear transformations. That is, if C' is an
m x m nonsingular matrix, then by replacing B with B = CB and A with A = CAC’ we have

B'A™'B = B'A'B. Moreover A ~ Wy,(n, ), where & = CEC’, and BY 'B = B'S"'B.
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. . . . I
Therefore by applying an appropriate linear transformation, we can assume that B = [ Ok ] .

All A12

Then B'A™!B = A", where A™! = [ 21 422 ] Now (see (2.7))

Al = (A — Ap A Ay

and hence (B/Ale)_1 = Aj1.2. By Theorem 25.2 we have that Aj12 ~ Wi(n—m+k, X11.2).
It remains to note that here X119 = (B’E_lB)*l. O

Proposition 25.3 If A ~ W,,(n,X) and Y is an m x 1 random vector independent of A and
such that Prob(Y = 0) =0, then
v's~ly

Ya-ly ~ X?L—m"rl' (25.6)

Proof. By Theorem 25.3 we have that conditional on Y, (Y'A7'Y)™! ~ Wi(n — m +
1,(Y’S71Y)~!). This implies (25.6). O

25.1 Hotelling’s T? statistic

Hotelling’s T2 statistic is an extension of ¢ distribution to a multivariate setting. Let X1, ..., X n
be an iid sample from normal distribution N;,(p, X), and S be the sample covariance matrix.
Recall that X and S are independent.

Suppose that we want to test Hp : p = pg against Hy : p # pg, where pg is a given m x 1
vector. Hotelling’s T2 statistic for testing Hy is

T? = N(X — po) S (X — po). (25.7)

For m =1 this statistic can be written as ()257]3)2, where S%2 = (N —1)7! Z?;(Xi — X)? is the
X—uo

sample variance. So in that case T? = t2, where t = SN

We proceed now to statistical inference of Hotelling’s statistic. For n = N — 1 we can write

is the usual ¢ statistic.

T2 N(X —n)'="" (X — no)

n (n(g’c—uoyzfl(g’c—uo))
(X —po)' S™HX —p)

Under Hy we have that NY/2(X — py) ~ N(0, %), and hence N(X — o) S HX — pg) ~ x2,.
Also by Proposition 25.1 we have that nS ~ W, (n, ¥) and hence by Proposition 25.3,

n(X — p)'= X — po)

(X = no)'s7HX — mo)

2
~ Xn—m+1-

We obtain the following result.
Theorem 25.4 Let X1,..., Xy id Np (s, X). Then under Hy : = py,
(N —m)T?

—————— ~Fh Nom- 25.8
m(N —1) N (25.8)

Note that as N — oo, the coefficient % in (25.8) tends to 1/m. Therefore for large N the
distribution of T2 becomes like x?2,. This should be not surprising since by the LLN, S converges

w.p.1 to =, and N(X — py)' 71X — pg) has x2, distribution when g = p (Theorem 3.1).
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Suppose now that we want to test linear model Hy : Au = ¢, where A is a k X m matrix of
rank k and ¢ is k x 1 vector. The corresponding Hotelling’s T2 statistic is

T? = N min (X — p)'S™HX — ). (25.9)
Ap=c

It is possible to write this in the form
T? = N(AX — ¢)(ASA") 1 (AX —¢). (25.10)

Indeed, suppose for the sake of simplicity that ¢ = 0. Consider X = S “12X and A = AS'/2.
Then making change of variables 7 = S~/ we have

min (X — p)’S™HX — p) = min (X —7)(X — 7). (25.11)
Ap=0 AT=0
The right hand side of (25).11) is the squared distance from X to the space orthogonal to the
one generated by matrix A. Hence

/ ~ ~

min (X —7)(X —7)=X )1AX = (AX)'(ASA")"1(AX).

AT=0
Under Hy, N/2(AX — ¢) ~ Ni(0, AXA’) and

(N — k)T?

Y PNk 25.12
k(N —1) ~ TRNE (25.12)

Indeed, consider Y; = AX,;, i = 1,..., N. We have that Y; ~ Ny(Au, AXA’). AlsoY = AX
and the corresponding sample covariance matrix is ASA’. Hotelling’s T2 statistic for testing
Hy : Ap = c is given by the left hand side of (25.12).

26 Spatial statistics

Consider a (real valued) function Z(z) of z € R%. Given values (observations, measurements)
of Z(-) at some points, we would like to evaluate (to estimate) value of Z(x) at a given point
x = x*. As a modeling approach we view Z(x) as a random process. It is said that Z(x)
is stationary if for any points x1,..., 2, € R? and h € RY, random vector (Z(x1), ..., Z(Zm))
has the same distribution as (Z(x1 + h), ..., Z(xy, + h)). This definition of stationarity is too
general for practical use. It is said that Z(x) is second order (or weakly) stationary if its mean
E[Z(x)] is constant (independent of &), and its covariance function c(x,y) = Cov(Z(x), Z(y))
has the property that for any x,y, h € R? it follows that c¢(x + h,y + h) = c(x,y). Of course
any stationary process is second order stationary provided it has finite second order moments.
By taking h = —y we have then that ¢(x,y) = ¢(x — y,0). That is, for the second order
stationary process the covariance function depends on the difference * — y. So we use notation
c(x —y) = Cov(Z(x), Z(y)) for the (auto)covariance function.

The autocovariance function c¢(-) has the following properties. It is symmetric, i.e., c(h) =
¢(—h), this follows from that Cov(Z(x), Z(y)) = Cov(Z(y), Z(x)). Since ¢(0) = Cov(Z(x), Z(x)) =
Var(Z(x)), it follows that ¢(0) > 0. We have that

|Cov(Z(x), Z(y))| < v/ Var(Z(x))y/ Var(Z(y))

and hence |c(h)| < ¢(0) for all h € R?. The function ¢(-) should be positive definite. That is for
any i, ..., &, € R? the covariance matrix of (Z(x1), ..., Z(#,,)) should be positive semidefinite,
i.e., the m xm matrix with entries a;; = c(x;—x;), 7, j = 1, ..., m, should be positive semidefinite.
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The semivariogram of (stationary) process Z(x) is defined as
1(h) = 3E[|Z(x + h) — Z(@)P).
Note that we can assume that E[Z(h)] = 0 and hence ¢(0) = Var(Z(h)) = E[Z(h)?], and thus
v(h) = iE[Z(z + h)* + Z(x)* — 2Z(x + h)Z(z)] = c(0) — c(h).

Consider m x m matrix I with entries I';; = y(x; — x;), 1,7 = 1, ..., m. Note that I';; = co — ¢,
where ¢y = ¢(0) and ¢;; = ¢(x; — x;). In matrix form this can be written as I' = ¢y1,,1;, — C,
where C' is m x m matrix with entries c;;.

Given observations Z(x1), ..., Z(xy) consider the linear predictor

We have that
N N
E[Z(@)] = wl[Z(z:)] = p > w,
i=1 i=1

where y is the mean of the process. Therefore Z(x) is unbiased iff ZZ]\LI w; = 1. It is said that
Z(x) is the Best Linear Unbiased Predictor (BLUP) if the weights w; are chosen to minimize
variance of the error Z(x) — Z(x). Now (since sz\il w; =1)

N
Var(Z(x) — Z(x)) = Var sz(z(iﬂz) —Z(z))|
i=1

and
Cov(Z(xi)—Z(x), Z(x;)—Z(x) = Cov(Z(x;), Z(x;))—Cov(Z(x), Z(x;))—Cov(Z(x), Z(x;))+c(0).

Moreover
Cov(Z(x;), Z(xj)) = c(0) —y(x; — xj) = co — I'yj.

In matrix form we can write this as
Var(Z(x) — Z(x)) = —w'Tw + 2g'w,
where I';; = y(x; — ;) and g; = y(x — ;). The BLUP is solution of the problem

N
min —w'Tw + 2¢'w subject to Zwi =1.
v i=1

By using method of Lagrange multipliers this can be written as the following system of N 4 1
linear equations

y(Xr—=x1) - y(Er—xN) 1 w1 y(x — 1)
y(Xny —21) 0 y(@y —oN) 1 wy |~ | v(x -z
1 1 0 A 1

with N + 1 unknowns wi, ..., wn, A.
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It is said that the model is isotropic if y(h) is a function of ||k|. In that case the semivar-
iogram (h) becomes a function of one dimensional variable h = ||h||. The following are some
popular parametric models of semivariograms.

Linear v(0) = 0 and y(h) = ¢ + bh for h > 0, where ¢ > 0 and b > 0 are parameters. This
model is valid for any dimension d. Note that here limy ov(h) = ¢y with ¢y could be strictly
positive. Value limp o (h) is called the nugget effect.

Exponential model 7(0) = 0 and y(h) = co + co(1 — e~/¢) for h > 0, where ¢y > 0, ¢, > 0
and ay > 0. This model is valid for any dimension d.

Note that both models have nugget ¢y, and in the linear model the semivariogram is un-
bounded, while in the exponential model the semivariogram is bounded by cg + ¢y.

Positive-definite functions. Recall that for complex number ¢ = a + bi its conjugate
¢ = a— bi, where i2 = —1. A function ¢ : R® — C is positive-definite if ¢(—x) = ¢(x) and
for any x4, ..., € R™ and cy, ..., ¢, € C it follows that

> ckd(p —m0) > 0

k=1

This means that the corresponding m x m matrix I' with components vy = ¢(xy —
xy) is Hermitian!®. If ¢(x) is real valued, then the corresponding matrix T is positive
semidefinite. For m = 1 and ¢; = 1 it follows that ¢(x; — x1) > 0, i.e., ¢(0) > 0. Also

[¢(z)| < ¢(0).
Recall that €’ = cos#+isinf. Consider Fourier transform of finite positive Borel measure
w on R™

a(z) :/ e EF®du(x), z € R™.
If du(x) = f(x)dz, then
ile) = [ @i

is the Fourier transform of function f. Note that measure p is positive if f(x) > 0 for all
x € R™

For any z1,...,2z, € R" and ¢y, ..., ¢, € C we have

> arrilzr —z0) = Y Ck@/ e E2) gy () =
Ei=1 k=1 R
/ Z crEpe” (zp—2z¢) :Bd,u / (che izjx ) (Z —iz m) (m) _
R™ g e=1 =
m 2
/ che_iz;v:C du(x) > 0.
R™ |k=1

That is, Fourier transform of a finite positive Borel measure is a positive definite function.
The converse of that is also true (its proof is not trivial).

Theorem 26.1 (Bochner) If ¢ : R" — C is positive definite, continuous, and satisfies
¢(0) = 1, then there is Borel probability measure p on R™ such that ¢ is Fourier transform

of .

0A matrix A = [ake] is said to be Hermitian if are = Gre and > ;' ,_; arexr@e > 0 for any x1, ..., Tm € C.
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