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1 Some matrix calculus

For an m × n matrix A we denote by A′ its transpose n ×m matrix. Unless stated otherwise
vectors a = (a1, ..., am)′ are assumed to be column vectors. If A and B are two matrices
such that their product AB is well defined, then the transpose of AB is B′A′, i.e., (AB)′ =
B′A′. Trace of a square m ×m matrix A is defined as the sum of its diagonal elements, i.e.,
tr(A) = a11 + ...+ amm. It has the following important property. Let A and B be two matrices
such that their product AB is well defined. Then

tr(AB) = tr(BA). (1.1)

In particular, if a = (a1, ..., am)′ is an m × 1 vector, then aa′ is an m × m matrix, its trace
tr(aa′) =

∑m
i=1 a

2
i = a′a.

LetA be an m×m matrix. We denote by |A| the determinant ofA. Matrix A is nonsingular
(invertible) if and only if (iff) |A| 6= 0. It is said that λ is an eigenvalue of A if there is an m× 1
vector e 6= 0 such that Ae = λe. It follows that (A − λIm)e = 0, where Im is the m × m
identity matrix. Thus matrix (A− λIm) is singular, and hence its determinant |A− λIm| = 0.
Consider1 p(λ) := |A−λIm|. This is a polynomial of degree m and hence has m roots which are
eigenvalues of matrix A. Therefore matrix A has m eigenvalues some of which can be complex
numbers. Suppose now that matrix A is symmetric, i.e., A′ = A. Then it has m real valued
eigenvalues λ1 ≥ · · · ≥ λm and a corresponding set of eigenvectors e1, ..., em such that

Aei = λiei, i = 1, ...,m. (1.2)

The eigenvectors can be chosen in such a way that e′iej = 0 for i 6= j and e′iei = 1 for i = 1, ...,m,
i.e., these eigenvectors are orthogonal to each other and of length one. In that case we say the
eigenvectors are orthonormal.

Consider the m × m matrix T = [e1, ..., em] whose columns are formed from a set of or-
thonormal eigenvectors. Matrix T has the following property T ′T = Im and TT ′ = Im. Such
matrices are called orthogonal. Equations (1.2) can be written in the form AT = TΛ, where
Λ = diag(λ1, ..., λm) is the diagonal matrix. By multiplying both sides of this matrix equation
by T ′ we obtain

A = TΛT ′ =

m∑
i=1

λieie
′
i. (1.3)

The representation (1.3) is called spectral decomposition of matrix A. It also follows that
T ′AT = Λ, and that tr(A) = tr(Λ) = λ1 + · · · + λm, and A−1 = TΛ−1T ′, provided that
all λi 6= 0, i = 1, ...,m.

It is said that matrix A is positive semidefinite if x′Ax ≥ 0 for any x ∈ Rm, and it is said
that A is positive definite if x′Ax > 0 for any x 6= 0. By using (1.3) we can write

x′Ax = x′TΛT ′x = y′Λy =

m∑
i=1

λiy
2
i ,

where y = T ′x. Note that y′y = x′TT ′x = x′x. It follows that matrixA is positive semidefinite
iff all its eigenvalues are nonnegative, and is positive definite iff all its eigenvalues are positive.

We can define a function of symmetric matrix A by considering a function of its eigen-
values. For example if matrix A is positive semidefinite and hence all its eigenvalues are

1Sometimes we write ‘:=’ meaning ‘equal by definition’.
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nonnegative we can define A1/2 = TΛ1/2T ′, where Λ1/2 = diag(λ
1/2
1 , ..., λ

1/2
m ). The so de-

fined matrix A1/2 is symmetric positive semidefinite and (A1/2)2 = TΛ1/2T ′TΛ1/2T ′ = A,
since T ′T = Im. Similarly if A is positive definite and hence all its eigenvalues are pos-
itive, we can define A−1/2 = TΛ−1/2T ′. Matrix A−1/2 is symmetric positive definite and
(A−1/2)2 = TΛ−1/2T ′TΛ−1/2T ′ = A−1.

Let A and B be two m × m symmetric matrices. Then (AB)′ = BA, so the product
matrix is not symmetric unless AB = BA. Suppose that A is positive semidefinite, then
matrix A1/2BA1/2 is symmetric. Let e be an eigenvector and λ the corresponding eigenvalue of
A1/2BA1/2, i.e., A1/2BA1/2e = λe. Multiplying both sides of this equation by A1/2 we obtain
ABA1/2e = λA1/2e. That is, A1/2e is the corresponding eigenvector and λ is the eigenvalue
of matrix AB. This shows that although AB is not symmetric, it has real valued eigenvectors
and eigenvalues. Moreover, if B is positive semidefinite, thenA1/2BA1/2 is positive semidefinite
and hence all eigenvalues of AB are nonnegative, and if both A and B are positive definite
matrices, then A1/2BA1/2 is positive definite and hence all eigenvalues of AB are positive.

Random vectors. Consider an m × 1 random vector X = (X1, ..., Xm)′. Its expected value
µ = E[X] is defined as E[X] = (E[X1], ...,E[Xm])′, i.e., the expectation is taken componentwise.
Similarly expectation of a random matrix is taken componentwise. Sometimes we write µX to
emphasize that this is mean vector of X. The m×m covariance matrix of X is

Σ := E[(X − µ)(X − µ)′] = E[XX ′]− µµ′.

The (i, j)-component of Σ is the covariance Cov(Xi, Xj), i, j = 1, ...,m.
Covariance matrix Σ has the following properties. It is symmetric, i.e., Σ′ = Σ. Consider a

(deterministic) k ×m matrix A and k × 1 random vector Y = AX. Then

µY = E[Y ] = E[AX] = AE[X] = AµX .

In particular, if k = 1 and Y = a′X = a1X1 + ... + amXm, where a = (a1, ..., am)′, then
E[Y ] = a′µX . Now

ΣY = E[Y Y ′]− µY µ′Y = E[AXX ′A′]−AµXµ′XA′.

Since E[AXX ′A′] = AE[XX ′]A′ it follows that

ΣY = AΣXA
′. (1.4)

In particular, if A = a′ = (a1, ..., am)′ is a row vector, then

Var(a′X) = a′Σa =

m∑
i,j=1

σijaiaj , (1.5)

where σij = Cov(Xi, Xj) is the (i, j)-component of covariance matrix Σ = ΣX . Since variance
of a random variable is always nonnegative, it follows that a′Σa ≥ 0 for any m × 1 vector a.
Therefore covariance matrix Σ is positive semidefinite. If moreover Σ is nonsingular (invertible),
then it is positive definite.

Recall that matrix Σ is positive definite iff a′Σa > 0 for all a 6= 0. If a′Σa = 0 for some
a 6= 0, then this means that Var(a′X) = 0 and hence Y = a′X is constant. In turn this means
that random variables X1 − µ1, ..., Xm − µm are linearly dependent. Therefore Σ is positive
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definite iff variables X1 − µ1, ..., Xm − µm are linearly independent.

As an example let us compute expectation ofX ′AX =
∑m

i,j=1 aijXiXj , whereA is an m×m
matrix. Note that using property (1.1) we can write X ′AX = tr(X ′AX) = tr(AXX ′). Also
E[tr(AXX ′)] = tr(E[AXX ′] and hence

E[X ′AX] = tr(AE[XX ′]) = tr(A(Σ + µµ′)) = tr(AΣ) + tr(Aµµ′) = tr(AΣ) + µ′Aµ. (1.6)

2 Multivariate normal distribution

Recall that a random variable X has normal distribution with mean µ and variance σ2, denoted
X ∼ N (µ, σ2), if its probability density function (pdf) is

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Now let X1, ..., Xm be an iid sequence2 of standard normal variables, i.e., Xi ∼ N (0, 1),
i = 1, ...,m, and these random variables are independent of each other. Then the pdf of random
vector X = (X1, ..., Xm)′ is

fX(x) =

m∏
i=1

1√
2π
e−

x2i
2 =

1

(2π)m/2
e−

x21+...+x
2
m

2 =
1

(2π)m/2
exp(−x′x/2).

Consider Y = AX, where A is an m ×m nonsingular matrix. Note that X = A−1Y . Then
the pdf of Y is

fY (y) = fX
(
A−1y

)
|A−1| = 1

(2π)m/2|A|
exp(−y′A′−1A−1y/2) =

1

(2π)m/2|ΣY |1/2
exp(−y′Σ−1

Y y/2).

Recall that |A| denotes determinant of (square) matrix A. We used the following properties
in the above derivations: |A−1| = |A|−1, A

′−1A−1 = (AA′)−1, and ΣY = AΣXA
′ = AA′

since ΣX = Im is the identity matrix, |ΣY | = |AA′| = |A| |A′| = |A|2. Note also that
E[Y ] = AµX = 0.

Finally consider Y = AX + µ. The pdf of this random vector is

fY (y) =
1

(2π)m/2|Σ|1/2
exp

{
− (y − µ)′Σ−1(y − µ)/2

}
. (2.1)

If random vector Y has pdf of the form (2.1), where Σ is a symmetric positive definite matrix,
then it is said that Y has multivariate normal distribution, denoted Y ∼ N (µ,Σ). Sometimes
we write this as Nm(µ,Σ) to emphasize dimension m of random vector Y . Note that µ is the
m× 1 mean vector and Σ is the m×m covariance matrix of Y .

Suppose that X ∼ Nm(µ,Σ) is partitioned X =

[
X1

X2

]
, where X1 and X2 are subvectors

of X of the respective dimensions m1 × 1 and m2 × 1, with m1 +m2 = m. The corresponding

partitioning of µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. Note that Σ21 = Σ′12 since Σ is symmetric.

2A sequence X1, ..., Xm of random variables is said to be iid (independent identically distributed), if these
random variables are independent of each other and have the same probability distribution.
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Suppose further that Σ12 = 0 and hence Σ21 = Σ′12 = 0, i.e., matrix Σ is block diagonal. Then

|Σ| = |Σ11| |Σ22| and Σ−1 =

[
Σ
−1
11 0

0 Σ
−1
22

]
, and hence

fX(x) = fX1(x1)fX2(x2),

where fX(·) is the pdf of X and fX1(·) and fX2(·) are pdfs of X1 and X2, respectively. It follows
that random vectors X1 and X2 are independent. That is, for multivariate normal distribution
“independent” and “uncorrelated” are equivalent.

Moment generating function of a random variable X is defined as M(t) := E[etX ]. Since
e0 = 1, it follows that M(0) = 1. Note that it can happen that M(t) = +∞ for any t 6= 0.
Two random variables X and Y have the same distribution if their moment generating functions
MX(t) and MY (t) are equal to each other for all t in some neighborhood of zero, provided these
moment generating functions are finite valued in that neighborhood.

Similarly moment generating function of a random vector X = (X1, ..., Xm)′ is defined as

M(t) := E[et1X1+...+tmXm ] = E[exp(t′X)].

If MX(t) is finite valued in a neighborhood of 0 ∈ Rm, then it is differentiable in that neigh-
borhood. Consider m × 1 vector ∂MX(t)/∂t = (∂MX(t)/∂t1, ..., ∂MX(t)/∂tm)′ of first order
partial derivatives, and m×m matrix of second order3 partial derivatives ∂2MX(t)/∂t∂t′ with
(i, j) - element ∂2MX(t)/∂ti∂tj , i, j = 1, ...,m. Then the expectation and differentiation opera-
tions can be interchanged (see Remark 8.1) and

∂MX(t)/∂t
∣∣
t=0

= E
[
∂ exp(t′X)/∂t

∣∣
t=0

]
= E

[
X exp(t′X)

∣∣
t=0

]
= E[X].

Similarly the Hessian matrix

∂2MX(t)/∂t∂t′
∣∣
t=0

= E[XX ′].

Let us compute the moment generating function of X ∼ N (µ,X). For standard normal
random variable X ∼ N (0, 1) we have

M(t) =
1√
2π

∫ +∞

−∞
etxe−x

2/2dx =
1√
2π

∫ +∞

−∞
e−(x−t)2/2et

2/2dx = et
2/2 1√

2π

∫ +∞

−∞
e−x

2/2dx = et
2/2.

Let X ∼ N (0, Im) and hence components Xi ∼ N (0, 1) of X are independent. Thus

M(t) = E[et1X1+...+tmXm ] = E[et1X1 × · · · × etmXm ] =
m∏
i=1

E[etiXi ] =
m∏
i=1

et
2
i /2 = exp(t′t/2).

Consider now Y = AX + µ. Since X ∼ N (0, Im) we have that E[Y ] = µ and the covariance
matrix of Y is Σ = AA′. Then

MY (t) = E[exp(t′(AX + µ))] = E[exp(t′µ) exp(t′AX)] = exp(t′µ)E[exp((A′t)′X)]
= exp(t′µ)MX(A′t) = exp(t′µ) exp(t′AA′t/2) = exp(t′µ+ t′Σt/2).

That is, for Y ∼ Nm(µ,Σ) its moment generating function is finite valued for any m× 1 vector
t, and

MY (t) = exp(t′µ+ t′Σt/2). (2.2)

3Matrix of second order partial derivatives is called Hessian matrix.
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Now let X ∼ Nm(µ,ΣX) and Y = AX + η, where A is a k × m matrix and η is k × 1
vector. Then

MY (t) = exp(t′(AX + η)) = exp(t′η)MX(A′t) = exp(t′(Aµ+ η)) exp(t′AΣA′t/2).

That is, the moment generating function of Y is the same as the moment generating function
of multivariate normal with mean AX +η and covariance matrix AΣA′. It follows that Y has
multivariate normal distribution with mean µY = Aµ+ η and covariance matrix ΣY = AΣA′.
In particular, marginal distribution of every subvector of X is multivariate normal.

A delicate point of the above result is that the covariance matrix AΣA′ of Y should be non-
singular, i.e. positive definite, in order for its density function fY (y) to be well defined. Since the
covariance matrix Σ ofX is positive definite, the matrixAΣXA

′ is nonsingular iff the k×m ma-
trix A has rank k. For example, if k > m, then rank(A) ≤ m < k and hence AΣXA

′ is singular.

It follows that random vectorX has multivariate normal distribution iff Y = a′X is normally
distributed for any vector a 6= 0. Indeed, if X has normal distribution, then as it was shown
above a′X is normally distributed. Conversely, suppose that a′X is normally distributed for
any a 6= 0. Consider Y := t′X for t 6= 0. We have that µY = t′µX and σ2

Y = t′ΣXt. Moreover
since Y has normal distribution its moment generating function MY (t) = exp(µY t+σ2

Y t
2/2). It

follows that

MX(t) = E[exp(t′X)] = MY (1) = exp(µY + σ2
Y /2) = exp(t′µX + t′ΣXt/2).

That is, the moment generating function of X has the form of normal distribution (see equation
(2.2)). It follows that X has normal distribution. �

Conditional normal distribution. Suppose thatX ∼ Nm(µ,Σ) is partitionedX =

[
X1

X2

]
with the corresponding partitioning of µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. We want to compute

the conditional distribution of X1 given X2 = x2. Consider

Y := X1 −Σ12Σ
−1
22 X2 =

[
Im1 , −Σ12Σ

−1
22

] [ X1

X2

]
.

Note that vector (Y ′,X ′2)′ has multivariate normal distribution. MoreoverX2 = [0, Im2 ]

[
X1

X2

]
and

Cov[Y ,X2] =
[
Im1 , −Σ12Σ

−1
22

] [ Σ11 Σ12

Σ21 Σ22

] [
0

Im2

]
=
[
Im1 , −Σ12Σ

−1
22

] [ Σ12

Σ22

]
= 0.

It follows that Y and X2 are uncorrelated and hence independent. Since X1 = Y +Σ12Σ
−1
22 X2

it follows that the conditional distribution of X1 given X2 = x2 is the same as the distribution
of Y + Σ12Σ

−1
22 x2. Now Y has multivariate normal distribution with mean

E[Y ] = µ1 −Σ12Σ
−1
22 µ2

and covariance matrix

ΣY =
[
Im1 , −Σ12Σ

−1
22

] [ Σ11 Σ12

Σ21 Σ22

] [
Im1

−Σ
−1
22 Σ21

]
= Σ11 −Σ12Σ

−1
22 Σ21.
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That is the conditional distribution of X1 given X2 = x2 is multivariate normal

Nm1

(
µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
. (2.3)

Note that the conditional covariance matrix Σ11−Σ12Σ
−1
22 Σ21 is given by the Schur complement

of Σ (see equation (2.5) below).

Chi-square, t and F distributions. There are three important distributions derived from
the normal distribution. Note that if X ∼ N (0, 1), then E[X2] = Var(X) = 1 and, using
integration by parts,

E[X4] =
1√
2π

∫ +∞

−∞
x4e−x

2/2dx =
3√
2π

∫ +∞

−∞
x2e−x

2/2dx = 3Var(X) = 3. (2.4)

Hence Var(X2) = E[X4]− 1 = 2.

Let Z1, ..., Zm be an iid sequence of standard normal random variables. Then Y := Z2
1 + ...+

Z2
m has chi-square distribution with m degrees of freedom, denoted Y ∼ χ2

m. The expected value
of Y is E[Y ] = E[Z2

1 ]+ ...+E[Z2
m] = m and variance Var(Y ) = Var(Z2

1 )+ ...+Var(Z2
m) = 2m. By

the Law of Large Numbers, Y/m tends in probability to 1, and by the Central Limit Theorem,
m−1/2(Y −m) tends in distribution to normal N(0, 2), as m→∞.

The t distribution with m degrees of freedom is defined as distribution of T = Z√
W/m

, where

Z ∼ N (0, 1) and W ∼ χ2
m are independent random variables, denoted T ∼ tm. Since for large

m, W/m becomes close to one, critical values of t-statistic are close to the respective standard
normal critical values when the degrees of freedom are large.

The F distribution with k and m degrees of freedom is defined as distribution of F = V/k
W/m ,

where V ∼ χ2
k and W ∼ χ2

m are independent random variables, denoted F ∼ Fk,m. It follows
from the above definitions that if T ∼ tm, then T 2 ∼ F1,m.

2.1 Schur complement

Consider (n+m)× (n+m) matrix

M =

[
A B
C D

]
,

where A,B,C,D are matrices of respective dimensions n× n, n×m, m× n, m×m. Suppose
that D is invertible (nonsingular). Then[

In −BD−1

0 Im

] [
A B
C D

] [
In 0

−D−1C Im

]
=

[
A−BD−1C 0

0 D

]
. (2.5)

The matrix A−BD−1C is called the Schur complement of M with respect to D.
Note that [

In −BD−1

0 Im

]−1

=

[
In BD−1

0 Im

]
and [

In 0
−D−1C Im

]−1

=

[
In 0

D−1C Im

]
,
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and determinants of these matrices equal one. Hence it follows from (2.5) that[
A B
C D

]
=

[
In BD−1

0 Im

] [
A−BD−1C 0

0 D

] [
In 0

D−1C Im

]
.

This implies the following formula for the determinant of matrix M ,

|M | = |A−BD−1C| |D|. (2.6)

Also it follows that matrix M is invertible iff the matrix A−BD−1C is invertible (recall that
it is assumed that D is invertible), in which case[

A B
C D

]−1

=

[
In 0

−D−1C Im

] [
(A−BD−1C)−1 0

0 D−1

] [
In −BD−1

0 Im

]
.

Using the above equation it is possible to compute[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
. (2.7)

3 Quadratic forms

In this section we discuss distribution of quadratic forms Q = X ′AX, whereX ∼ Nm(µ,Σ) and
A is an m×m symmetric (deterministic) matrix. Recall that the expected value of X ′AX was
computed in equation (1.6). Let us first consider simple case where A = Im and X ∼ N (0, Im).
Then Q = X2

1 + ...+X2
m has chi-square distribution with m degrees of freedom, Q ∼ χ2

m.

Theorem 3.1 Let X ∼ Nm(0,Σ). Then X ′Σ−1X ∼ χ2
m.

Proof. Consider spectral decomposition Σ = TΛT ′ of the covariance matrix Σ, and random
vector Y = Σ−1/2X, where Σ−1/2 = TΛ−1/2T ′. Note that E[Y ] = 0, the covariance matrix of
Y is Σ−1/2ΣΣ−1/2 = Im and Y ∼ N (0, Im). Moreover

Y ′Y = X ′Σ−1/2Σ−1/2X = X ′Σ−1X.

Hence X ′Σ−1X = Y 2
1 + ...+ Y 2

m ∼ χ2
m. �

An m×m matrix P is said to be idempotent or projection matrix if P 2 = P . All eigenvalues
of a projection matrix are either 1 or 0. Indeed if λ is an eigenvalue of P and e the corresponding
eigenvector, then P 2e = P (Pe) = λ2e. On the other hand since P 2 = P , P 2e = λe. It follows
that λ2 = λ, and hence λ = 1 or λ = 0.

Moreover, suppose that P is symmetric. Then for any x ∈ Rm,

(x− Px)′Px = x′Px− x′P ′Px = x′Px− x′P 2x = 0.

That is, P makes orthogonal projection of vector x onto the linear space {y : y = Px, x ∈ Rm}.
Also by the spectral decomposition, P = T 1T

′
1, where T 1 is the m × r matrix whose

columns are orthonormal eigenvectors corresponding to eigenvalues 1, i.e., T ′1T 1 = Ir. Then
rank(P ) = r = tr(P ).

Theorem 3.2 Let X ∼ Nm(0, Im) and P be symmetric projection matrix of rank r. Then
X ′PX ∼ χ2

r.
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Proof. Consider spectral decomposition P = T 1T
′
1. Then X ′PX = X ′T 1T

′
1X = Z ′Z,

where Z = T ′1X. We have that the r × 1 vector Z has normal distribution with zero mean
vector and covariance matrix T ′1T 1 = Ir. It follows that X ′PX ∼ χ2

r . �

Noncentral chi square distribution.
Let X ∼ Nm(µ, Im) and consider Q = X ′X = X2

1 + ...+X2
m. Note that if Y = TX, where T is

an orthogonal matrix, then Y ′Y = X ′X and E[Y ] = Tµ, and the covariance matrix of Y is Im.
It follows that the distribution of Q depends on δ = µ2

1 + ...+ µ2
m rather than individual values

of the components of the mean vector µ. Distribution of Q is called noncentral chi square with
the noncentrality parameter δ = µ2

1 + ... + µ2
m and m degrees of freedom, denoted Q ∼ χ2

m(δ).
Similar to Theorems 3.1 and 3.2 it is possible to show the following.

Theorem 3.3 If X ∼ Nm(µ,Σ), then X ′Σ−1X ∼ χ2
m(δ) with the noncentrality parameter

δ = µ′Σ−1µ. If X ∼ Nm(µ, Im) and P is symmetric projection matrix of rank r, then X ′PX ∼
χ2
r(δ), where δ = µ′Pµ.

4 Statistical inference of linear models

Consider linear regression model

Yi = β0 + β1xi1 + ...βkxik + εi, i = 1, ..., N. (4.1)

Denote by Y = (Y1, ..., YN )′ vector of responses, Xj = (x1j , ..., xNj)
′, j = 1, ..., k, predictors

(regressors), ε = (ε1, ..., εN )′ vector of errors and 1N = (1, ..., 1)′ vector of ones. Then we can
write model (4.1) as Y = β01N + β1X1 + ...+ βkXk + ε, or equivalently in matrix form as

Y = Xβ + ε, (4.2)

where β = (β0, β1, ..., βk)
′ is vector of parameters and X = [1N ,X1, ...,Xk] is N × p, p = k+ 1,

so called design matrix. Note that the first column of X is formed by ones. Unless stated
otherwise, it will be assumed that X has full column rank p, i.e., column vectors 1N ,X1, ...,Xk

of the design matrix are linearly independent.
Note that the design matrix X is assumed to be deterministic. This is justified when values

xij of the predictors (regressors) are observed without error. If xij are modelled as random, the
analysis below can be pushed through by conditional arguments.

The Least Squares Estimator (LSE) β̂ of β is solution of the problem

min
β

(Y −Xβ)′(Y −Xβ). (4.3)

By Pythagoras Theorem vector of residuals e = Y − Xβ̂ is orthogonal to the linear space
generated by columns of the design matrixX. That is e′X = 0 or equivalentlyX ′(Y −Xβ̂) = 0.
It follows that (X ′X)β̂ = X ′Y . Since it is assumed that matrixX has full column rank, the p×p
matrix X ′X is nonsingular (invertible). Thus the LSE can be written as β̂ = (X ′X)−1X ′Y .

Suppose that E[ε] = 0. Then (recall that the design matrixX is assumed to be deterministic)

E[β̂] = (X ′X)−1X ′E[Y ] = (X ′X)−1X ′E[Xβ + ε] = (X ′X)−1X ′(Xβ + E[ε]) = β.

That is, β̂ is an unbiased estimator of β.
Consider the N ×N matrix H := X(X ′X)−1X ′. Note that vector Ŷ = Xβ̂ of fitted values

is given by Ŷ = HY , and vector of residuals e = Y − Ŷ is given by e = (IN −H)Y . Matrix H

10



is the orthogonal projection matrix onto the space generated by columns of X, i.e., HY = Xβ̂
and X ′(Y −HY ) = 0; and matrix IN −H is the orthogonal projection matrix onto the space
orthogonal to the space generated by columns of X.

Matrix H has the following properties:

(i) H is symmetric.

(ii) H and IN −H are idempotent (projection) matrices, i.e. H2 = H and (In −H)2 =
IN −H.

(iii) tr(H) = p and tr(IN −H) = N − p.

(iv) HX = X and (IN −H)X = 0.

Suppose that the errors εi, are uncorrelated, E(εi) = 0 and Var(εi) = σ2, i = 1, ..., N , that
is, Cov(Y ) = Cov(ε) = σ2IN . Then the covariance matrix of β̂ can be computed as

Cov(β̂) = (X ′X)−1X ′[Cov(Y )]X(X ′X)−1 = σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1.

It also follows that the covariance matrix of e is

Cov(e) = Cov[(IN −H)Y ] = σ2(IN −H)2 = σ2(IN −H).

Moreover E[e] = (IN −H)E[Y ] = (IN −H)Xβ = 0 and hence

E
[
e2

1 + ...+ e2
N

]
=

N∑
i=1

E[e2
i ] =

N∑
i=1

Var(ei) = σ2tr(IN −H) = σ2(N − p).

That is,
S2 := 1

N−p
∑N

i=1 e
2
i

is an unbiased estimator of σ2.
Since the first column of X is vector 1N = (1, ..., 1)′ of ones and e′X = 0, it follows that

e′1N = 0, that is
∑N

i=1 ei = 0. In a similar way we have e′Ŷ = Y ′(IN −H)HY = 0. That is,

residuals e and fitted values Ŷ are uncorrelated.
Consider Ȳ = N−1

∑N
i=1 Yi. Since

∑N
i=1 ei = 0 we have that Ȳ = N−1

∑N
i=1 Ŷi as well. Note

that
N∑
i=1

(Ŷi − Ȳ )(Yi − Ŷi) =
N∑
i=1

(Ŷi − Ȳ )ei = e′Ŷ − Ȳ
N∑
i=1

ei = 0,

and hence

N∑
i=1

(Yi − Ȳ )2 =

N∑
i=1

(Yi − Ŷi + Ŷi − Ȳ )2 =

N∑
i=1

(Ŷi − Ȳ )2 +

N∑
i=1

(Yi − Ŷi)2.

That is
SY Y = SSR + SSE , (4.4)

where

SY Y :=

N∑
i=1

(Yi − Ȳ )2, SSR :=

N∑
i=1

(Ŷi − Ȳ )2, SSE :=

N∑
i=1

e2
i . (4.5)

11



The so-called coefficient of determination is defined as

R2 :=
SY Y
SSR

= 1− SSE
SSR

.

It is interpreted as proportion of the total variation SY Y (corrected for the average) explained by
variation SSR due to regression. Another interpretation is that R2 = r2, where r is the sample
correlation coefficient between Yi and Ŷi. Indeed

N∑
i=1

(Ŷi − Ȳ )(Yi − Ȳ ) =
N∑
i=1

(Ŷi − Ȳ )(Yi − Ŷi + Ŷi − Ȳ ) =
N∑
i=1

(Ŷi − Ȳ )2,

and hence

r2 =

 ∑N
i=1(Ŷi − Ȳ )(Yi − Ȳ )√∑N

i=1(Ŷi − Ȳ )2

√∑N
i=1(Yi − Ȳ )2

2

=

[∑N
i=1(Ŷi − Ȳ )2

]2

∑N
i=1(Ŷi − Ȳ )2

∑n
i=1(Yi − Ȳ )2

=

∑N
i=1(Ŷi − Ȳ )2∑N
i=1(Yi − Ȳ )2

.

In case of one predictor, i.e., Yi = β0 + βXi + εi, i = 1, ..., N , the sample correlation between Yi
and Ŷi = β̂0 + β̂Xi is the same as the sample correlation between Yi and Xi, i = 1, ..., N .

Theorem 4.1 (Gauss - Markov) Suppose that E[ε] = 0 and Cov[ε] = σ2IN . Then the LSE
β̂ is the Best Linear Unbiased Estimator (BLUE) of β. That is, if β̃ = A′Y is a linear unbiased
estimator of β (i.e., E[β̃] = β for all β), then

Var(a′β̃) ≥ Var(a′β̂) (4.6)

for any p× 1 vector a.

Proof. Since E[β̃] = β for all β, it follows that β = A′E[Y ] = A′Xβ. Hence (Ip−A′X)β =
0 for all β, and thus A′X = Ip. Consider matrix B = A − X(X ′X)−1. Note that since
X ′A = Ip, it follows that

(X ′X)−1X ′B = (X ′X)−1X ′(A−X(X ′X)−1) = 0,

and hence X ′B = 0.
Now since covariance matrix of Y is σ2IN it follows that

Var(a′β̃) = Var(a′A′Y ) = σ2a′A′Aa.

Also since X ′B = 0 we have that

A′A = (X ′X)−1)X ′X(X ′X)−1 +B′B = (X ′X)−1 +B′B.

Hence
Var(a′β̃) = σ2a′(X ′X)−1a+ σ2a′B′Ba = Var(a′β̂) + σ2a′B′Ba.

It remains to note that a′B′Ba = (Ba)′Ba ≥ 0. �

The LSE β̂ is the solution of the system of linear equations (X ′X)β = X ′Y . It can happen
that small changes in values of the design matrix X result in big changes in the solution of that
system of equations. In numerical analysis such problems are called ill-conditioned. In regression
this is called multicollinearity problem, when columns of the design matrix are ‘almost’ linearly
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dependent. Ill conditioning of a system of linear equations is measured by the so-called condition
number (see below).

In regression the multicollinearity problem is measured by the so-called Variance Inflation
Factor, VIFi, which is a measure of collinearity of regressor (predictor) Xi with the other
regressors, i = 1, ..., k. It is defined as VIFi := 1/(1 − R2

i ), where R2
i is the coefficient of

determination of regression Xi on the other regressors. Let X̃ = [X̃1, ..., X̃k] be the N × k
normalized design matrix, i.e., the averages are removed from each regressor so the sum of
elements of each regressor X̃i is zero, and all diagonal elements of k × k matrix R := X̃

′
X̃ are

equal to one, i.e., the sum of squared elements of each regressor X̃i is equal to one.

Consider the following partitioning

[
1 r12

r21 R11

]
of matrix R. Then by equation (2.7) we

have that the first diagonal element of matrix R−1 is equal to (1 − r12R
−1
11 r21)−1. Consider

now regression of the first regressor X̃1 on the other regressors X̃2, ..., X̃k. The corresponding
coefficient of determination R2

1 is equal to r12R
−1
11 r21. This can be applied to regression of every

X̃i on the other regressors. Therefore Variance Inflation Factors can be obtained as diagonal
elements of the matrix R−1.

Condition number.
Consider the system of linear equations Ax = b, where A is a nonsingular n × n matrix
(not necessarily symmetric) and b is an n× 1 nonzero vector. It has solution x0 = A−1b.
Consider perturbed system Ax = b+ε, where ε is a “small” vector of errors. This system
has solution xε = x0 + A−1ε. Consider the following ratio of the relative error in the
solution to the relative error in b

‖A−1ε‖/‖x0‖
‖ε‖/‖b‖

=
‖A−1ε‖
‖ε‖

× ‖b‖
‖A−1b‖

.

The following maximum is called the conditional number of A:

cond(A) := max
b6=0,ε 6=0

‖A−1ε‖
‖ε‖ × ‖b‖

‖A−1b‖
=

(
max
ε6=0

‖A−1ε‖
‖ε‖

)(
max
b6=0

‖b‖
‖A−1b‖

)
.

Now let σmin(A) =
√
λmin(A′A) and σmax(A) =

√
λmax(A′A) be the minimal and maxi-

mal singular values of A (see section 15.4). Then

max
ε6=0

‖A−1ε‖
‖ε‖

= max
‖ε‖=1

√
ε′(A′A)−1ε =

1

σmin(A)
,

and

max
b6=0

‖b‖
‖A−1b‖

= max
z 6=0

‖Az‖
‖z‖

= σmax(A).

Therefore cond(A) = σmax(A)/σmin(A).

If matrix A is symmetric positive definite, then σmax(A) and σmin(A) are the largest and
smallest eigenvalues of A, respectively. For matrix A = γIn, γ 6= 0, its condition number
cond(γIn) = 1. Otherwise the condition number is bigger than one.

4.1 Distribution theory

Suppose now that ε ∼ N (0, σ2IN ) and hence Y ∼ N (Xβ, σ2IN ). It follows that the LSE β̂

has normal distribution N (β, σ2(X ′X)−1). Hence it follows by Theorem 3.1 that

σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2
p, (4.7)
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where p = k + 1. Recall that S2 = (N − p)−1e′e is an unbiased estimator of σ2.
Since Y = Xβ + ε and (IN −H)X = 0,

(N − p)S2

σ2
=
e′e

σ2
=
Y ′(IN −H)2Y

σ2
=
Y ′(IN −H)Y

σ2
=
ε′(IN −H)ε

σ2
.

Recall that IN −H is a projection matrix. Its rank

rank(IN −H) = tr(IN −H) = tr(IN )− tr(H) = N − tr(X(X ′X)−1X ′)
= N − tr((X ′X)−1X ′X) = N − p.

By Theorem 3.2 it follows that
(N − p)S2

σ2
∼ χ2

N−p . (4.8)

Moreover

Cov[e, β̂] = (IN −H)Cov(Y )X(X ′X)−1 = σ2(IN −H)X(X ′X)−1 = 0.

Hence e and β̂ are independent. It follows that S2 and β̂ are independent, and hence S2 and
σ−2(β̂ − β)′X ′X(β̂ − β) are independent. It follows that

(β̂ − β)′X ′X(β̂ − β)/p

S2
∼ Fp,N−p. (4.9)

This can be used to construct the following (1− α)-confidence region for β:{
β : (β̂ − β)′X ′X(β̂ − β) ≤ pS2Fα; p,N−p

}
.

Now consider SY Y , SSR and SSE and recall that SY Y = SSR + SSE (see equation (4.4)).
Also

(N − p)S2 = SSE = Y ′(IN −H)Y (4.10)

and

SSR = (Ŷ −1N Ȳ )′(Ŷ −1N Ȳ ) = (HY −N−11N1′NY )′(HY −N−11N1′NY ) = Y ′(H−N−11N1′N )2Y .

Moreover, since H1N = 1N (this holds since HX = X and the first column of X is 1N ) we
obtain (H −N−11N1′N )2 = H −N−11N1′N . and hence

SSR = Y ′(H −N−11N1′N )Y . (4.11)

Since (IN −H)H = 0 and (IN −H)1N = 0, we have that

(IN −H)(H −N−11N1′N ) = (IN −H)H −N−1(IN −H)1N1′N = 0,

and hence SSE and SSR are independent.
Consider the following so-called F -statistic, for testing H0 : β1 = ... = βk = 0, against the

alternative that at least one βi 6= 0,

F =
SSR/k

SSE/(N − p)
. (4.12)

Recall that SSE/σ
2 ∼ χ2

N−p. Also under H0 we have that Y = β01N and hence

(H −N−11N1′N )Y = β0(H −N−11N1′N )1N = β0(H1N −N−11N1′N1N ) = 1N − 1N = 0.
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Consequently
SSR = ε′(H −N−11N1′N )ε,

and hence SSR/σ
2 ∼ χ2

k. Note that

rank(H −N−11N1′N ) = tr(H −N−11N1′N ) = tr(H)− 1 = k.

It follows that under H0 the statistic F has Fk,N−p distribution.
Under alternative H1, SSR/σ

2 has noncentral chi square distribution SSR/σ
2 ∼ χ2

k(δ) with
noncentrality parameter

δ = σ−2β′X ′(H −N−11N1′N )Xβ = σ−2β′
(
X ′X −N−1(1′NX)′(1′NX)

)
β.

Therefore under the alternative, the F -statistic has noncentral F distribution with the noncen-
trality parameter δ for SSR.

4.2 Estimation with linear constraints

Suppose that we want to test linear constraints a′iβ = ci, i = 1, ..., q. We can write this as
Aβ = c, where A is the corresponding q × p matrix whose rows are formed from vectors a′i,
i = 1, ..., q, and c = (c1, ..., cq)

′. We assume that vectors ai, i = 1, ..., q, are linearly independent,
i.e., matrix A has full row rank q.

The respective constrained least squares estimator β̂H is obtained as a solution of the fol-
lowing optimization problem

min
β

(Y −Xβ)′(Y −Xβ) subject to Aβ = c. (4.13)

Consider the Lagrangian of the above problem (4.13):

L(β,λ) := (Y −Xβ)′(Y −Xβ) + 2

q∑
i=1

λi(a
′
iβ − ci)

= (Y −Xβ)′(Y −Xβ) + 2λ′(Aβ − c).

Problem (4.13) is a convex quadratic problem. Optimality conditions for problem (4.13) can be
written as ∂L(β,λ)/∂β = 0 and Aβ = c. Note that

∂L(β,λ)/∂β = −2X ′Y + 2X ′Xβ + 2A′λ.

Hence the optimality conditions can be written as the following system of linear equations[
X ′X A′

A 0

] [
β

λ

]
=

[
X ′Y
c

]
. (4.14)

Note that the Schur complement of matrix

[
X ′X A′

A 0

]
with respect to matrix X ′X is

−A(X ′X)−1A′. Since it is assumed that matrixX has full column rank and hence matrixX ′X
is nonsingular, and since matrix A has full row rank q, it follows that −A(X ′X)−1A′ is non-

singular, and hence matrix

[
X ′X A′

A 0

]
is invertible. Therefore the corresponding estimators

are given by [
β̂H
λ̂H

]
=

[
X ′X A′

A 0

]−1 [
X ′Y
c

]
. (4.15)
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By using formula (2.7) for the inverse

[
X ′X A′

A 0

]−1

, after some algebraic calculations it is

possible to write the estimator β̂H in the following form

β̂H = β̂ + (X ′X)−1A′[A(X ′X)−1A′]−1(c−Aβ̂), (4.16)

where β̂ = (X ′X)−1X ′Y is the unconstrained LSE. It is possible to give the following geomet-
rical interpretation. Consider ŶH = Xβ̂H . Recall that Y − Ŷ is orthogonal to the linear space
generated by columns of matrix X. Since Ŷ − ŶH = X(β̂ − β̂H), it follows that Y − Ŷ is
orthogonal to Ŷ − ŶH . Hence (Pythagoras Theorem)

‖Y − ŶH‖2 = ‖Y − Ŷ ‖2 + ‖Ŷ − ŶH‖2, (4.17)

where ‖ · ‖ is the Euclidean norm. Moreover

Ŷ − ŶH = X(X ′X)−1A′[A(X ′X)−1A′]−1(c−Aβ̂). (4.18)

The term ‖Y − ŶH‖2 represents the sum of squares of residuals of the reduced (constrained)
model, i.e., it is the optimal value of the least squares problem (4.13), and the term ‖Y − Ŷ ‖2
is the sum of squares of residuals of the full (unconstrained) model. By (4.18),

‖Ŷ − ŶH‖2 = (Aβ̂ − c)′[A(X ′X)−1A′]−1(Aβ̂ − c). (4.19)

The F -statistic for testing H0 : Aβ = c is

F =
(SSE(H)− SSE(F ))/q

SSE(F )/(N − p)
, (4.20)

where SSE(F ) is the sum of squares of residuals of the full (unconstrained) model and SSE(H)
is the sum of squares of residuals of the reduced (constrained) model. By (4.17) and (4.19) we
have

SSE(H)− SSE(F ) = (Aβ̂ − c)′[A(X ′X)−1A′]−1(Aβ̂ − c). (4.21)

Recall that β̂ ∼ N (β, σ2(X ′X)−1), and hence

Aβ̂ − c ∼ N
(
Aβ − c, σ2A(X ′X)−1A′

)
.

It follows by Theorem 3.1 that under the H0 : Aβ = c hypothesis, [SSE(H)−SSE(F )]/σ2 ∼ χ2
q .

Also SSE(F )/σ2 ∼ χ2
N−p and SSE(F ) is independent of β̂, and hence SSE(H) − SSE(F ) and

SSE(F ) are independent. It follows that under the H0 hypothesis, the F statistic (4.20) has
Fq,N−p distribution.

The F -statistic (4.12), for testing H0 : β1 = ... = βk = 0, is a particular case of the F -statistic
(4.20). Indeed in that case, under H0, the LSE β̂0 = Ȳ and hence SSE(H) = SY Y . It follows
that SSE(H)− SSE(F ) = SSR.

The statistical inference discussed in section 4.1 and this section is based on the assumption
that the error vector ε has normal distribution. Without this assumption the inference is
asymptotic. Recall that for large N , the qFq,N−p distribution becomes approximately like χ2

q

distribution.
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4.3 Polynomial Regression

Consider the polynomial regression model (one predictor)

Yi = β0 + β1xi + ...βkx
k
i + εi, i = 1, ..., N. (4.22)

We can formulate this as the linear multivariate model Y = Xβ + ε with the design matrix

X =


1 x1 · · · xk1

· · · · · · · · ·
1 xN · · · xkN

 .
We have here [X ′X]st =

∑N
i=1 x

s+t
i .

Note that (Riemann sum) ∫ 1

0
xs+tdx ≈ 1

N

N∑
i=1

xs+ti ,

where xi is a point of the interval [(i− 1)/N, i/N ], i = 1, ..., N . Therefore

[X ′X]st =
N∑
i=1

xs+ti ≈ N
∫ 1

0
xs+tdx =

N

s+ t+ 1
, s, t = 0, ..., k.

That is

X ′X ≈ N


1 1/2 1/3 · · · 1/(k + 1)

1/2 1/3 1/4 · · · 1/(k + 2)
1/3 1/4 1/5 · · · 1/(k + 3)

· · · · · · · · ·
1/(k + 1) 1/(k + 2) 1/(k + 3) · · · 1/(2k + 1)

 .
This matrix is ill conditioned. Therefore polynomial regression of the form (4.22) typically
has multicollinearity problem for k ≥ 3. To a certain extend this can be dealt with by using
orthogonal polynomials. A famous example of orthogonal polynomials is Chebishev polynomials.
Even so, polynomial regression of degree larger than 2 usually is difficult to interpret.

Chebishev polynomials

Tm(x) = cos[m(arccosx)], −1 ≤ x ≤ 1.

Let θ = arccosx. Then

T0(x) = cos 0 = 1,

T1(x) = cos θ = x,

T2(x) = cos(2θ) = 2 cos2 θ − 1 = 2x2 − 1.

Recall that
cos(m+ 1)θ + cos(m− 1)θ = 2 cos θ cosmθ.

It follows that
Tm+1(x) + Tm−1(x) = 2xTm(x),

and hence
Tm+1(x) = 2xTm(x)− Tm−1(x)
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can be used for recursive computation of Chebishev polynomials. For example

T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x.

By using substitution d arccosx = 1√
1−x2dx, we can compute the following integral∫ 1

−1

Tk(x)T`(x)√
1− x2

dx =

∫ 1

−1
cos(kθ) cos(`θ)dθ = 0, for k 6= `.

For xi = cos(π/N)i and θi = (π/N)i we have

N−1∑
i=0

Tk(xi)T`(xi) =
N−1∑
i=0

cos kθi cos `θi = 0, k 6= `. (4.23)

For the corresponding polynomial regression

Yi = β0T0(xi) + β1T1(xi) + ...+ βkTk(xi) + εi, i = 1, ..., N,

the design matrix is

X =

 T0(x1) · · · Tk(x1)
· · ·

T0(xN ) · · · Tk(xN )

 .
By (4.23) columns of this design matrix are orthogonal to each other, and hence matrix
X ′X is diagonal.

5 Shrinkage Methods

A norm ‖ · ‖, on space Rm, assigns a nonnegative number to vector x ∈ Rm . It should have the
following properties: (i) ‖x‖ > 0 for any x 6= 0, (ii) ‖λx‖ = |λ| ‖x‖ for any λ ∈ R and x ∈ Rm,
(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any x,y ∈ Rm. Properties (ii) and (iii) imply that function
f(x) = ‖x‖ is convex. Any two norms ‖ · ‖ and ‖ · ‖′ on Rm are equivalent in the following sense:
there is a constant C > 0 (depending on dimension m of the space Rm) such that ‖x‖ ≤ C‖x‖′
and ‖x‖′ ≤ C‖x‖ for all x ∈ Rm.

Important examples of norms are the `q, q ≥ 1, norms defined as ‖x‖q = (|x1|q+...+|xm|q)1/q.
In particular, the `2 norm is the Euclidean norm ‖x‖2 =

√
x2

1 + ...+ x2
m , and `1 norm is

‖x‖1 = |x1| + ... + |xm|. Note that function ‖ · ‖q is homogeneous (i.e., satisfies the above
property (ii)) for any q > 0. However for q ∈ (0, 1), ‖ · ‖q does not satisfy property (iii), i.e., it
is not convex.

5.1 Ridge Regression

Consider the following approach, called Ridge Regression, to estimation parameters of the linear
model (4.2)

min
β∈Rp

‖Y −Xβ‖22 + ε‖β‖22, (5.1)

where ε > 0. Solution β̃ε of this problem satisfies optimality conditions

−X ′(Y −Xβ) + εβ = 0.
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That is β̃ε = (X ′X+εIp)
−1X ′Y (recall that p = k+1 is the number of estimated parameters).

Of course for ε = 0 the estimator β̃ε coincides with the LSE β̂ = (X ′X)−1X ′Y . It is also
possible to formulate problem (5.1) in the following form

min
β∈Rp

‖Y −Xβ‖22 subject to ‖β‖2 ≤ c, (5.2)

for a certain value of c > 0 (take c = ‖β̃ε‖2). Conversely solution of problem (5.2), for some
c > 0, is also the solution of problem (5.1) when ε is the corresponding Lagrange multiplier.
(If ‖β̂‖2 ≤ c, then the corresponding ε = 0.) Therefore in a sense problems (5.1) and (5.2) are
equivalent to each other for a proper choice of the respective positive constants ε and c.

The estimator β̃ε shrinks the LSE to the origin. In particular if columns of the design matrix
X are orthogonal, i.e., matrix X ′X = diag(λ1, ..., λp) is diagonal. Then

X ′X + εIp = diag(λ1 + ε, ..., λp + ε)

and β̃ε,i = (1 + ε/λi)
−1β̂i. Let X ′X = TΛT ′ be the spectral decomposition of matrix X ′X,

with λ1 ≥ · · · ≥ λp > 0 being the eigenvalues and Λ = diag(λ1, ..., λp). Then X ′X + εIp =
T (Λ + εIp)T

′.
Recall that number λ1/λp is called the condition number of matrix X ′X. The condition

number of matrix X ′X + εIp is (λ1 + ε)/(λp + ε), and can be much smaller than λ1/λp even for
small values of ε > 0 if the ratio ε/λp is large. Moreover β̃ε = T (Λ + εIp)

−1T ′X ′Y , and hence

γ̃ε = (Λ + εIp)
−1X̃

′
Y ,

where γ̃ε = T ′β̃ε and X̃ = XT . Note that X̃
′
X̃ = Λ and hence γ̃ε,i = (1 + ε/λi)

−1γ̂i, where γ̂
is the LSE of the corresponding linear model with X replaces by X̃. If ε is much larger than λi,
and hence the ratio ε/λi is large, then γ̃ε,i becomes small. In that sense this procedure removes
from the design matrix X̃ columns corresponding to small values of the eigenvalues λi, and in
an implicit way is related to the Principal Components Analysis discussed in section 15.

The estimator β̃ε is biased, that is E[β̃ε] = (X ′X + εIp)
−1X ′Xβ. It is possible to show

that there exists ε > 0 such that the components of β̃ε have smaller Mean Square Error (MSE)
than the respective components of the LSE β̂. That is, let θ = a′β for some given vector a 6= 0,
and let θ̃ε = a′β̃ε and θ̂ = a′β̂ be estimators of θ. Note that a′β̂ is an unbiased estimator of
a′β. We show that there exists ε > 0 such that

MSE(θ̃ε) < MSE(θ̂),

where MSE(θ̃) = E[(θ̃ − θ)2] is the mean square error of an estimator θ̃.
Recall that

β̃ε = (X ′X + εIp)
−1X ′Y = [Ip + ε(X ′X)−1]−1β̂,

and hence
E[θ̃ε] = a′[Ip + ε(X ′X)−1]−1β.

For a matrix A sufficiently small we have the following geometric series expansion

(I +A)−1 = I −A+A2 − ... = I −A+ o(‖A‖),

where ‖A‖ := supx6=0 ‖Ax‖/‖x‖. By applying this to matrix A = ε(X ′X)−1 for ε > 0 small
enough, we obtain

E[θ̃ε] = a′[Ip − ε(X ′X)−1]β + o(ε) = θ − εa′(X ′X)−1β + o(ε),
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where o(ε)/ε→ 0 as ε→ 0. It follows that

Bias[θ̃ε] = E[θ̃ε]− θ = −εa′(X ′X)−1β + o(ε),

and hence
Bias2[θ̃ε] = ε2[a′(X ′X)−1β]2 + o(ε2) = o(ε).

We also have that

Var[θ̃ε] = σ2a′[Ip + ε(X ′X)−1]−1(XX ′)−1[Ip + ε(X ′X)−1]−1a
= σ2a′[Ip − ε(X ′X)−1](XX ′)−1[Ip − ε(X ′X)−1]a+ o(ε)
= σ2a′(XX ′)−1a− 2εσ2a′(X ′X)−2a+ o(ε)

= Var[θ̂]− 2εσ2a′(X ′X)−2a+ o(ε).

Therefore

MSE(θ̂)−MSE(θ̃ε) = Var[θ̂]−Var[θ̃ε]− Bias2[θ̃ε] = 2εσ2a′(X ′X)−2a+ o(ε).

Since matrix X ′X is positive definite, and hence (X ′X)−2 is positive definite, and a 6= 0, we
have that σ2a′(X ′X)−2a > 0. It follows that for ε > 0 small enough the term 2εσ2a′(X ′X)−2a+
o(ε) is positive, and hence MSE(θ̃ε) < MSE(θ̂).

In particular this implies that for every i ∈ {1, ..., k}, there exists ε > 0 such that
MSE(β̃ε,i) < MSE(β̂i). However for different i ∈ {1, ..., k} the corresponding ε can be dif-
ferent, and could be difficult to find. In practical applications the components of β̃ε are plotted
as a function of ε > 0 until they stabilize.

5.2 Lasso method

The Least Absolute Shrinkage and Selection Operator (Lasso) method is based on using regu-
larization term of the form ε‖β‖1 for some ε > 0. That is, the Lasso estimator β̃ε is obtained
as a solution of the following optimization problem

min
β∈Rp

‖Y −Xβ‖22 + ε‖β‖1. (5.3)

Equivalently this can be formulated as

min
β∈Rp

‖Y −Xβ‖22 subject to ‖β‖1 ≤ c, (5.4)

for an appropriate choice of the constant c > 0. If c < ‖β̂‖1, then the Lasso estimator performs
shrinkage of the LSE β̂.

Note that
∂‖Y −Xβ‖22

∂β
= 2(X ′Xβ −X ′Y ) = 2(X ′X)(β − β̂),

where β̂ = (X ′X)−1X ′Y is the usual least squares estimator. When c < ‖β̂‖1, an optimal
solution of problem (5.4) is on the boundary of the feasible set S = {β : ‖β‖1 ≤ c} and the
corresponding optimality conditions are

−2(X ′X)(β − β̂) ∈ NS(β),

where NS(β) := {γ : γ ′(ζ − β) ≤ 0, ∀ζ ∈ S} is the normal cone to S at β ∈ S.
Optimality conditions for problem (5.3) are

0 ∈ 2(X ′X)(β − β̂) + ε∂‖β‖1,
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where ∂‖β‖1 is the subdifferential of the function f(β) = ‖β‖1. The subdifferential ∂‖β‖1
consists of vectors g (the so-called subgradients) such that gi = 1 if βi > 0, gi = −1 if βi < 0,
and gi can be any number of the interval [−1, 1] if βi = 0. It follows that if ε is bigger than the
absolute value of every component [X ′Y ]i of vector X ′Y , then β̃ε = 0. If X ′X is diagonal,
then β̃ε,i = 0, when ε > [X ′Y ]i.

It is possible to look at Lasso estimation from the following point of view. By definition ‖β‖0
is equal to the number of nonzero components of vector β. Note that ‖β‖0 = limq↓0

∑
|βi|q.

Consider the problem
min
β∈Rp

‖Y −Xβ‖22 subject to ‖β‖0 ≤ c, (5.5)

i.e., it is the least squares problem subject to the constraint that the number of used regressors
is not larger than c. This is a difficult combinatorial problem. Problem (5.4) can be viewed
as a convex approximation of problem (5.5). Problem (5.3) can be formulated as the following
problem

min
β, ξ

‖Y −Xβ‖22 + ε
∑k

i=0 ξi

s.t. βi ≤ ξ, −βi ≤ ξi, i = 0, ..., k,
(5.6)

and problem (5.4) as
min
β, ξ

‖Y −Xβ‖22
s.t. βi ≤ ξi, −βi ≤ ξi, i = 0, ..., k,∑k

i=0 ξi ≤ c.
(5.7)

Both problems (5.6) and (5.7) are convex quadratic programming problems, and can be solved
efficiently.

6 Elements of large samples theory

Let Yn, n = 1, ..., be a sequence of random variables. It is said that Yn converges in probability
to a number a, denoted Yn

p→ a, if for any ε > 0 it follows that

lim
n→∞

Prob{|Yn − a| ≥ ε} = 0.

Convergence in probability can be also considered for a sequence Yn ∈ Rm, n = 1, ..., of random
vectors. That is, Yn converges in probability to a if for any ε > 0,

lim
n→∞

Prob{‖Yn − a‖ ≥ ε} = 0.

It is straightforward to show that Yn converges in probability to a iff its every component Yin
converges in probability to ai, i = 1, ...,m.

Law of Large Numbers (LLN) can be proved by using Chebishev inequality. Let X be a
nonnegative valued random variable. Then for any ε > 0 we have

Prob(X ≥ ε) = E
[
1[ε,∞)(X)

]
≤ E[ε−1X] = ε−1E[X],

where 1[ε,∞)(x) = 0 if x < ε and 1[ε,∞)(x) = 1 if x ≥ ε. The above inequality sometimes is
called Markov inequality. Now let X be a random variable with finite second order moment,
i.e., E[X2] <∞. By taking Y = (X − µ)2, where µ = E[X], we obtain from Markov inequality
the following Chebishev inequality:

Prob{|X − µ| ≥ ε} = Prob{(X − µ)2 ≥ ε2} ≤ ε−2E[(X − µ)2] = ε−2Var(X).
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It follows that if Yn is a sequence of random variables such that E[Yn] = µ, for all n, and Var(Yn)
tends to zero as n→∞, then then for any ε > 0,

Prob{|Yn − µ| ≥ ε} ≤ ε−2Var(Yn)→ 0.

This implies that Yn
p→ µ. In particular, if X1, ..., Xn is iid with µ = E[Xi] and σ2 = Var(Xi),

then Var(X̄) = σ2/n→ 0, and hence X̄
p→ µ as n→∞.

The convergence of X̄ to µ in probability is referred to as the (weak) Law of Large Numbers
(WLLN). The stronger version of LLN is that X̄ converges to µ with probability one
(w.p.1), provided the mean µ is well defined and finite. Note that convergence w.p.1
implies convergence in probability.

In Calculus the notation yn = o(xn) is used to denote that if xn and yn are sequences of
(deterministic) numbers, then yn/xn tends to zero as n→∞. The notation yn = O(xn) means
that there is a constant C ≥ 0 such that |yn| ≤ C|xn| for all n. Now let Xn and Yn be two
sequences of random numbers. For random numbers counterparts of o(·) and O(·) are defined as

follows. The notation Yn = op(Xn) means that Yn/Xn
p→ 0 as n→∞. Usually it is used when

Xn is deterministic. In particular Yn = op(1) means that Yn
p→ 0. It is said that Yn is bounded

in probability if for any ε > 0 there exists c > 0 such that Prob{|Yn| > c} ≤ ε for all n. The
notation Yn = Op(Xn) means that Yn/Xn is bounded in probability. These notations op(·) and
Op(·) can be viewed as probabilistic analogues of their deterministic counterparts o(·) and O(·)
and have similar properties. For example if Xn = op(1) and Yn = Op(1), then XnYn = op(1).

Recall that Xn converges in distribution to a random variable X, denoted Xn X, if for any
number x such that Prob{X = x} = 0 it follows that

lim
n→∞

Prob{Xn ≤ x} = Prob{X ≤ x}. (6.1)

Note that condition Prob{X = x} = 0 means that the cumulative distribution function (cdf)
F (x) = Prob(X ≤ x) of X is continuous at x, and condition (6.1) means that limn→∞ Fn(x) =
F (x), where Fn(·) is the cdf of Xn. That is, Xn converges in distribution to X if the cdf of Xn

converges to the cdf of X at every point where the cdf of X is continuous.
A sequence of random vectors Xn ∈ Rm converges in distribution to a random vector X if

lim
n→∞

Prob{Xn ∈ A} = Prob{X ∈ A}

for any rectangular set A = {x : ai ≤ xi ≤ bi, i = 1, ...,m} such that probability of X to be on
the boundary of A is zero.

Proposition 6.1 If Xn X, then Xn = Op(1), i.e., if Xn converges in distribution, then Xn is
bounded in probability.

Proof. Let Fn(x) = Prob(Xn ≤ x) and F (x) = Prob(X ≤ x) be cumulative distribution
functions of Xn and X, respectively, and ε > 0. Recall that Xn converges in distribution to X iff
limn→∞ Fn(x) = F (x) for every x ∈ R such that F (·) is continuous at x. Therefore we have that
Fn(x)→ F (x) provided that F is continuous at x. Since F (x)→ 1 as x→ +∞ and F (x)→ 0 as
x→ −∞, there exists a constant c0 such that F (c0) > 1− ε and F (−c0) < ε. Moreover, since a
monotonically nondecreasing function can have only a countable number of discontinuous points,
we can choose this constant c0 such that F is continuous at c0. It follows that there exists N
such that Fn(c0) ≥ 1− 2ε and Fn(c0) ≤ 2ε for all n ≥ N . That is, Prob(|Xn| ≥ c0) ≤ 4ε. Now
for every k there is a constant ck such that Prob(|Xk| ≥ ck) ≤ ε. Then for c = max{c0, c1, ..., cN}
we have that Prob(|Xn| ≥ c) ≤ 4ε for all n ∈ N. That is, for any ε > 0 there is c such that
Prob(|Xn| ≥ c) ≤ 4ε for all n. This shows that Xn is bounded in probability. �
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Theorem 6.1 (Slutsky’s theorem) If Xn X and Yn
p→ 0, then Xn + Yn X.

Proof. Consider the cdf F (x) = Prob{X ≤ x} of X. Let x be such that F (·) is continuous
at x. We need to show that Prob{Xn + Yn ≤ x} tends to F (x) as n→∞. For ε > 0 we have

Prob(Xn + Yn ≤ x) = Prob(Xn + Yn ≤ x, |Yn| ≤ ε) + Prob(Xn + Yn ≤ x, |Yn| > ε)

≤ Prob(Xn ≤ x+ ε) + Prob(|Yn| > ε).

Since Yn
p→ 0 we have that Prob(|Yn| > ε) tends to zero. Moreover let ε > 0 be such that F (·)

is continuous at x + ε. Then since Xn X, we have that Prob(Xn ≤ x + ε) tends to F (x + ε).
It follows that

lim sup
n→∞

Prob(Xn + Yn ≤ x) ≤ F (x+ ε).

Note that since F (x) is monotonically nondecreasing, the set of points where it is discontinuous
is countable. Therefore we can choose a sequence εn ↓ 0 such that F (·) is continuous at x+ εn.
By continuity of F (·) at x it follows that

lim sup
n→∞

Prob(Xn + Yn ≤ x) ≤ F (x).

In a similar way it is possible to show that

lim inf
n→∞

Prob(Xn + Yn ≤ x) ≥ F (x).

It follows that Prob{Xn + Yn ≤ x} tends to F (x). �

The concept of ‘bounded in probability’ can be extended to a sequence Yn ∈ Rm of random
vectors. That is, Yn is bounded in probability if for any ε > 0 there is a bounded set A ⊂ Rm
such that Prob{Yn 6∈ A} ≤ ε for all n. It is not difficult to show that Yn is bounded in probability
iff its every component Yin is bounded in probability.

Slutsky’s theorem also can be extended to random vectors. That is, if Xn converges in
distribution to X and Yn converges in probability to 0, then Xn +Yn converges in distribution
to X.

Theorem 6.2 (Delta theorem) Let Xn be a sequence of m × 1 random vectors and
g : Rm → Rk be a function. Suppose that λn(Xn − µ) Z, where µ ∈ Rm and λn → ∞,
and that g(·) is differentiable at µ with ∇g(µ) = ∂g(µ)/∂x being the m × k matrix of partial
derivatives (Jacobian matrix). Then

λn
(
g(Xn)− g(µ)

)
 [∇g(µ)]′Z. (6.2)

Proof. Since g(·) is differentiable at µ we have that

g(x)− g(µ) = [∇g(µ)]′(x− µ) + r(x),

where ε(x) = r(x)/‖x− µ‖ tends to 0 as x→ µ. Hence

λn
(
g(Xn)− g(µ)

)
= [∇g(µ)]′[λn(Xn − µ)] + ε(Xn)

[
λn‖Xn − µ‖

]
. (6.3)

Now since λn(Xn − µ) converges in distribution, it follows that λn(Xn − µ) is bounded in

probability. Moreover since λn → ∞ it follows that Xn
p→ µ. Hence ε(Xn)

p→ 0, and thus
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ε(Xn)
[
λn‖Xn − µ‖

] p→ 0. By Slutsky’s theorem the convergence (6.2) follows from (6.3). �

In particular it follows that if in addition to the assumptions of Theorem 6.2,
√
n(Xn − µ)

converges in distribution to normalN (0,Σ), then
√
n
(
g(Xn)−g(µ)

)
converges in distribution to

normal with zero mean and covariance matrix [∇g(µ)]′Σ[∇g(µ)]. For k = 1, i.e., when g : Rm →
R is a real valued function, ∇g(µ) becomes the gradient ∇g(µ) = (∂g(µ)/∂x1, ..., ∂g(µ)/∂xm)′

and [∇g(µ)]′Σ[∇g(µ)] becomes the asymptotic variance of
√
n
(
g(Xn)− g(µ)

)
.

Example 6.1 Let Xn and Yn be two independent sequences of random variables such that√
n
(
Xn − µx

)
 N (0, σ2

x) and
√
n
(
Yn − µy

)
 N (0, σ2

y), µy 6= 0. Let us find the asymptotic
distribution of (Vn,Wn), where Vn = XnYn and Wn = Xn/Yn. Consider g(x, y) = (xy, x/y).

Note that g(Xn, Yn) = (Vn,Wn). By Delta Theorem we have that
√
n

[
Vn − µxµy
Wn − µx/µy

]
converges

in distribution to normal N (0,Σ) with

Σ =

[
µy µx

1/µy −µx/µ2
y

] [
σ2
x 0

0 σ2
y

] [
µy 1/µy
µx −µx/µ2

y

]
.

That is, elements of the asymptotic covariance matrix Σ are: σ11 = µ2
yσ

2
x + µ2

xσ
2
y ,

σ22 = σ2
x/µ

2
y +

(
µ2
x/µ

4
y

)
σ2
y , σ12 = σ2

x − (µx/µy)
2σ2
y . In particular, if µx = µy and σ2

x = σ2
y ,

then σ12 = 0. In that case Vn = XnYn and Wn = Xn/Yn are asymptotically independent. �

Delta method can be extended to hight order terms. For example suppose that g : Rm → R is
twice continuously differentiable and ∇g(µ) = 0. Then the right hand side of (6.2) degenerates
to 0. Let H be the m ×m Hessian matrix of second order partial derivatives at x = µ, i.e.,

Hij = ∂2g(µ)
∂xi∂xj

, i, j = 1, ...,m. The second order expansion of g(·) at µ is

g(x)− g(µ) = 1
2(x− µ)′H(x− µ) + r(x),

where the remainder r(x) is of order o(‖x − µ‖2), i.e., r(x)/‖x − µ‖2 tends to 0 as x → µ.
Suppose further that

√
n(Xn − µ) Z. Then

n
(
g(Xn)− g(µ)

)
 1

2Z
′HZ. (6.4)

That is, 2n
(
g(Xn)− g(µ)

)
converges in distribution to the quadratic form Q = Z ′HZ.

7 Exponential family of distributions

It is said that X is distributed according to the exponential family (in the canonical form) if its
probability density function (pdf) is of the form

f(x, θ) = exp
[∑k

i=1 θiTi(x)−A(θ)
]
h(x), (7.1)

where θ = (θ1, ..., θk)
′ ∈ Θ is vector of parameters with

Θ =
{
θ :
∫

exp
[∑k

i=1 θiTi(x)
]
h(x)dx <∞

}
.

Let us show that for Tj = Tj(X) and Eθ(Tj) =
∫
Tj(x)f(x, θ)dx,

Eθ(Tj) =
∂

∂θj
A(θ), (7.2)
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Cov(Tj , T`) =
∂2

∂θj∂θ`
A(θ). (7.3)

Indeed, we have that
∫
f(x, θ)dx = 1 for all θ ∈ Θ. Let θ be an interior point of Θ, and hence

the expectation and differentiation can be interchanged. We have that ∂
∂θj

∫
f(x, θ)dx = 0 and

∂

∂θj
f(x, θ) =

[
Tj(x)− ∂

∂θj
A(θ)

]
f(x, θ),

and hence

0 =
∂

∂θj

∫
f(x, θ)dx =

∫
∂

∂θj
f(x, θ)dx

= Eθ
[
Tj −

∂

∂θj
A(θ)

]
= Eθ(Tj)−

∂

∂θj
A(θ).

It follows that Eθ(Tj) = ∂
∂θj
A(θ). The other equation follows in a similar way from

∂2

∂θj∂θ`

∫
f(x, θ)dx = 0.

8 Point estimation

8.1 Maximum likelihood method

Consider a parametric family of distributions defined by probability density functions (pdf)
f(x, θ), x ∈ Rm, with parameter vector θ ∈ Θ ⊂ Rk. Given an iid sample X1, ...,XN ,
the Maximum Likelihood (ML) estimator of θ is the maximizer θ̂n of the likelihood function
LN (θ) =

∏N
i=1 f(Xi, θ) over θ ∈ Θ. Note that both LN (θ) and θ̂N are functions of the sample,

this is suppressed in the notation. Since log x is monotonically increasing for x > 0, this can be
written as

θ̂N ∈ arg max
θ∈Θ

logLN (θ). (8.1)

Note that such maximizer may not exist or could be not unique. We assume that the random
sample is an iid replication of random vector X having pdf g(x), written X ∼ g(·), i.e., each Xi

has pdf g(·). In particular if g(·) = f(·, θ∗) for some θ∗ ∈ Θ, we say that the model is correctly
specified. It is said that the model is identified at θ∗ if f(·, θ) = f(·, θ∗), θ ∈ Θ, implies that
θ = θ∗. That is, θ∗ is the unique value of the parameter vector which defines the model.

Since logLN (θ) =
∑N

i=1 log f(Xi, θ), it follows by the LLN that for a given θ the average
N−1 logLN (θ) converges w.p.1 as N →∞ to

Eg[log f(X, θ)] =

∫ [
log f(x, θ)

]
g(x)dx,

provided this expectation is well defined and finite. The notation Eg emphasizes that the expec-
tation is taken with respect to the distribution of the sample defined by the pdf g(·). It is natural
then to expect that the ML estimator θ̂N will converge w.p.1 to a maximizer of Eg

[
log f(X, θ)

]
over θ ∈ Θ. And indeed it is possible to prove that such converges holds under certain regularity
conditions. In order to understand what such maximizer is, we need the following inequality.

Theorem 8.1 (Jensen inequality) Let φ : Rm → R be a convex function and X be an m× 1
random vector having mean µ = E[X]. Then

E[φ(X)] ≥ φ(µ). (8.2)
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Proof. Since φ(·) is convex we have that there exists γ ∈ Rm such that

φ(x) ≥ φ(µ) + γ ′(x− µ)

for any x ∈ Rm (vector γ is called subgradient of φ at µ). It follows that

E[φ(X)] ≥ φ(µ) + E[γ ′(X − µ)].

Since E[γ ′(X − µ)] = γ ′(E[X]− µ) = 0, the inequality (8.2) follows. �

Kullback-Leibler divergence of pdf f(·) from pdf g(·) is defined as

D(g‖f) :=

∫ [
log

g(x)

f(x)

]
g(x)dx = Eg

[
log

g(X)

f(X)

]
= −Eg

[
log

f(X)

g(X)

]
.

Since − log x is a convex function we have by Jensen inequality

D(g‖f) = −Eg
[

log
f(X)

g(X)

]
≥ − logEg

[f(X)

g(X)

]
= − log

∫
f(x)

g(x)
g(x)dx = − log

∫
f(x)dx = − log 1 = 0.

That is, D(g‖f) ≥ 0 and D(g‖f) = 0 iff f = g.

Since
D(g(·)‖f(·, θ)) = Eg [log g(X)]− Eg [log f(X, θ)] ,

we have that maximizing Eg[log f(X, θ)], over θ ∈ Θ, is equivalent to minimizing the Kullback-
Leibler divergence of f(·, θ) from g(·). In particular, if the model is correctly specified, i.e.,
g(·) = f(·, θ∗) for some θ∗ ∈ Θ, then θ∗ is a maximizer of Eθ∗ [log f(X, θ)], over θ ∈ Θ, where
the notation Eθ∗ emphasizes that the expectation is taken with respect to the distribution
g(·) = f(·, θ∗). That is

θ∗ ∈ arg max
θ∈Θ

{
Eθ∗ [log f(X, θ)] =

∫ [
log f(x, θ)

]
f(x, θ∗)dx

}
.

It follows that if the model is correctly specified and identified at θ∗ and some regularity condi-
tions are satisfied, then the ML estimator θ̂N converges w.p.1 to θ∗. In that case it is said that
θ̂N is a consistent estimator of θ∗.

8.1.1 Asymptotic distribution of the ML estimators

Let X ∼ f(x, θ), θ ∈ Rk, be a random vector. The following k × k matrix is called (Fisher)
information matrix

I(θ) := Eθ
{[ ∂

∂θ
log f(X, θ)

][ ∂
∂θ

log f(X, θ)
]′}

. (8.3)

The notation Eθ emphasises that the expectation is taken with respect to the distribution f(·, θ)
of X. Note that I(θ) is a function of θ.

Let us show that

I(θ) = −Eθ
{

∂2

∂θ∂θ′
log f(X, θ)

}
. (8.4)
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We need to show that

Eθ
{
∂ log f(X, θ)

∂θi

∂ log f(X, θ)

∂θj

}
= −Eθ

{
∂2

∂θi∂θj
log f(X, θ)

}
, (8.5)

i, j = 1, ..., k. We have that

Eθ
{
∂ log f(X, θ)

∂θi

}
= Eθ

{
∂f(X, θ)/∂θi
f(X, θ)

}
=

∫
∂f(x, θ)/∂θi
f(x, θ)

f(x, θ)dx =

∫
∂f(x, θ)

∂θi
dx.

Suppose now that ∫
∂f(x, θ)

∂θi
dx =

∂

∂θi

∫
f(x, θ)dx, (8.6)

i.e., the operations of differentiation with respect to θi and integration with respect to x can be
interchanged. Then the right hand side of (8.6) is 0, since

∫
f(x, θ)dx = 1 for all θ. It follows

that

Eθ
{
∂ log f(X, θ)

∂θi

}
=

∫
∂ log f(x, θ)

∂θi
f(x, θ)dx = 0, (8.7)

for all θ and hence
∂

∂θj

∫
∂ log f(x, θ)

∂θi
f(x, θ)dx = 0. (8.8)

By taking the derivative, in the left hand side of (8.8), inside the integral we obtain

0 =

∫
∂

∂θj

[
∂ log f(x, θ)

∂θi
f(x, θ)

]
dx

=

∫
∂2 log f(x, θ)

∂θi∂θj
f(x, θ)dx+

∫
∂ log f(x, θ)

∂θi

∂ log f(x, θ)

∂θj
f(x, θ)dx

= Eθ
{

∂2

∂θi∂θj
log f(X, θ)

}
+ Eθ

{
∂ log f(X, θ)

∂θi

∂ log f(X, θ)

∂θj

}
, (8.9)

and hence (8.5) follows. �

Remark 8.1 The above derivations are based on the interchangeability property that the oper-
ations of differentiation with respect to θi and integration with respect to x can be interchanged.
We used it twice, in (8.6) and again in (8.9). As it is discussed below the interchangeability
property (8.6) holds if f(x, ·) is differentiable and there is nonnegative valued function K(x)
such that E[K(X)] <∞ and

|f(x, θ1)− f(x, θ2)| ≤ K(x)‖θ1 − θ2‖, θ1, θ2 ∈ Rk,

i.e., if f(x, ·) is Lipschitz continuous with integrable Lipschitz constant. Similar condition is
needed for ∂f(x, θ)/∂θi, i = 1, ..., k, in order to justify (8.9).

Let us discuss conditions ensuring that the expectation and differentiation can be inter-
changed. Let g(x, θ) be a real valued function of x, θ ∈ R. Suppose that g(x, θ) is differentiable
in θ. We would like to verify that

∂

∂θ
E[g(X, θ)] = E

[
∂

∂θ
g(X, θ)

]
,
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where the expectation is with respect to distribution of random variable X. We have

∂

∂θ
E[g(X, θ)] = lim

h→0

E[g(X, θ + h)]− E[g(X, θ)]

h
= lim

h→0
E
[
g(X, θ + h)− g(X, θ)

h

]
.

In order to interchange the limit and the expectation (integration) we can use the Lebesgue
Dominated Convergence Theorem: if fn, g : Ω → R are such that |fn| ≤ g,

∫
Ω gdP < ∞ and

fn(ω)→ f(ω) for a.e. ω ∈ Ω, then
∫

Ω fndP →
∫

Ω fdP .
That is, suppose that there is function K(x) ≥ 0 such that E[K(X)] <∞ and for all h,∣∣g(X, θ + h)− g(X, θ)

∣∣ ≤ K(X)|h|.

Then by the Lebesgue Dominated Convergence Theorem, the limit and the expectation (inte-
gration) can be interchanged and hence

∂

∂θ
E[g(X, θ)] = E

[
lim
h→0

g(X, θ + h)− g(X, θ)

h

]
= E

[
∂

∂θ
g(X, θ)

]
.

�

Let us show that the information matrix I(θ) is positive semidefinite. We have that, for
a ∈ Rk,

a′I(θ)a =
k∑

i,j=1

aiajIij(θ),

where

Iij(θ) = Eθ
{
∂ log f(X, θ)

∂θi

∂ log f(X, θ)

∂θj

}
,

and hence

aiajIij(θ) = Eθ
{(

ai
∂ log f(X, θ)

∂θi

)(
aj
∂ log f(X, θ)

∂θj

)}
.

It follows that

a′I(θ)a = Eθ


[

k∑
i=1

ai
∂ log f(X, θ)

∂θi

]2
 ,

and hence a′I(θ)a ≥ 0. �

Consider now the ML estimation procedure. Suppose that the model is correctly specified
and let θ̂N be the ML estimator of the true parameter value θ∗. Assume that θ̂N is a consistent
estimator of θ∗, i.e., θ̂N converges w.p.1 to θ∗. Suppose further that θ∗ is an interior point of
the set Θ. Since θ̂N is a consistent estimator of θ∗, it follows that θ̂N is in the interior of the set
Θ for all N large enough. Then since θ̂N is a maximizer of logLN (θ), the following optimality
condition holds

∂

∂θ

[
N∑
i=1

log f(Xi, θ̂N )

]
= 0. (8.10)

By the Mean Value Theorem we can write

∂

∂θ

[
N∑
i=1

log f(Xi, θ̂N )

]
=

∂

∂θ

[
N∑
i=1

log f(Xi, θ
∗)

]
+

[
∂2

∂θ∂θ′

N∑
i=1

log f(Xi, θ̃N )

]
(θ̂N − θ∗),
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for some θ̃N between θ̂N and θ∗. It follows that

√
N(θ̂N − θ∗) = −

√
N

[
∂2

∂θ∂θ′

N∑
i=1

log f(Xi, θ̃N )

]−1 [
∂

∂θ

N∑
i=1

log f(Xi, θ
∗)

]

= −

[
1

N

∂2

∂θ∂θ′

N∑
i=1

log f(Xi, θ̃N )

]−1 [
1√
N

∂

∂θ

N∑
i=1

log f(Xi, θ
∗)

]
. (8.11)

Since θ̂N , and hence θ̃N , converge to θ∗ w.p.1, we have by the LLN that

1

N

∂2

∂ θ∂θ′

N∑
i=1

log f(Xi, θ̃N ) =
1

N

N∑
i=1

∂2

∂ θ∂θ′
log f(Xi, θ̃N )

converges to −I(θ∗). Now note that

Eθ
[
∂

∂θi
log f(X, θ)

]
= Eθ

[
∂
∂θi
f(X, θ)

f(X, θ)

]
=

∫
∂

∂θi
f(x, θ)dx =

∂

∂θi

∫
f(x, θ)dx = 0.

Therefore by the CLT we have that 1√
N

∂
∂θ

∑N
i=1 log f(Xi, θ

∗) converges in distribution to normal

with zero mean vector and covariance matrix I(θ∗). Together with (8.11) this implies that

√
N(θ̂N − θ∗) N

(
0, I(θ∗)−1

)
. (8.12)

That is, the ML estimator θ̂N has approximately normal distribution with mean θ∗ and covari-
ance matrix N−1I(θ∗)−1. �

Remark 8.2 The above derivations of the basic result (8.12) involve several assumptions (reg-
ularity conditions). The asymptotic result (8.12) is local, it is based on the second order ap-
proximation of the likelihood function at the true value θ∗. So the MLE estimator should be
consistent in order to justify such approximations. In order to apply necessary condition (8.10),
the MLE should be an interior point of the set Θ, i.e., should not be on the boundary of the
set Θ. If θ∗ is a boundary point of Θ, then the asymptotics of the MLE is different. We also
needed the interchangeability property, that the operations of integration with respect to x and
differentiation with respect to θ can be interchanged (see Remark 8.1). �

Example 8.1 Suppose that X1, ..., XN are iid having uniform distribution on the interval [0, θ],
θ > 0, with pdf f(x, θ) = 1/θ for x ∈ [0, θ], and f(x, θ) = 0 otherwise. Hence the likelihood
function is LN (θ) = 1/θN for X(N) ≤ θ, where X(N) = max{X1, ..., XN}. Since LN (θ) is
monotonically decreasing with increase of θ, the MLE is given by the smallest possible value of
θ which is X(N). That is X(N) is the MLE of θ.

The cdf of Xi is F (x) = x/θ for x ∈ [0, θ]. Then the cdf of N
[
θ −X(N)

]
, for x ∈ [0, Nθ], is

Prob
(
N
[
θ −X(N)

]
≤ x

)
= Prob

(
X(N) ≥ θ − x/N

)
= 1− Prob

(
X(N) < θ − x/N

)
= 1− Prob

(
Xi < θ − x/N, i = 1, ..., N

)
= 1−

N∏
i=1

Prob(Xi < θ − x/N
)

= 1− [F (θ − x/N)]N = 1− (1− x/(Nθ))N .
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Furthermore
lim
N→∞

(
1− x/(Nθ)

)N
= e−x/θ.

It follows that the cdf of N
[
θ − X(N)

]
converges to 1 − e−x/θ. This implies that

N
[
θ − X(N)

]
converges in distribution to exponential exp(λ) with λ = 1/θ. Note that the

situation here is not standard, the optimality equation (8.10) is not applicable here. Also the
asymptotic variance is of order O(N−2) rather than O(N−1) as in the standard case. �

8.2 Cramér - Rao lower bound

Let X = (X1, ...,XN ) be an iid sample from f(x, θ), θ ∈ R, and T (X) be a statistic, i.e., T (X)
is a function of X. Note that f(x, θ) =

∏N
j=1 fj(xj , θ) is the pdf of X = (X1, ...,XN ), where

fj(xj , θ) is pdf of Xj . Since the sample is iid, pdfs fj(·, θ) are the same for all j = 1, ..., N .
Then under some regularity conditions

Varθ[T (X)] ≥ iX(θ)−1[∂g(θ)/∂θ]2, (8.13)

where g(θ) := Eθ[T (X)] and

iX(θ) = Eθ
[( ∂
∂θ

log f(X, θ)
)2
]

(8.14)

is Fisher’s information of f(x, θ). In particular, if Eθ[T (X)] = θ, i.e. T (X) is an unbiased
estimator of θ, then

Varθ[T (X)] ≥ iX(θ)−1.

Note that, by the independence of X1, ...,XN ,

iX(θ) = Varθ

[
∂

∂θ
log f(X, θ)

]
=

N∑
j=1

Varθ

[
∂

∂θ
log fj(Xj , θ)

]
= Ni(θ),

where i(θ) = Eθ
[
( ∂∂θ log fj(Xj , θ))

2
]

is the information number of individual Xj .

Proof. We have that

Eθ
[
∂

∂θ
log f(X, θ)

]
=

∫ ∂
∂θf(x, θ)

f(x, θ)
f(x, θ)dx =

∫
∂

∂θ
f(x, θ)dx =

∂

∂θ

∫
f(x, θ)dx = 0,

provided the derivative can be interchanged with the integral (see Remark 8.1). Then

Covθ

(
T (X),

∂

∂θ
log f(X, θ)

)
= Eθ

[
T (X)

∂

∂θ
log f(X, θ)

]
= Eθ

[
T (X)

∂

∂θ
f(X, θ)/f(X, θ)

]
=

∫
T (x)∂f(x, θ)/∂θdx =

∂

∂θ

∫
T (x)f(x, θ)dx.

That is,

Covθ
(
T (X), ∂∂θ log f(X, θ)

)
= ∂

∂θEθ[T (X)] = ∂g(θ)/∂θ.

Now by Cauchy inequality we have[
Covθ

(
T (X), ∂∂θ log f(X, θ)

)]2 ≤ Varθ[T (X)]Varθ
[
∂
∂θ log f(X, θ)

]
.

Moreover

Varθ
[
∂
∂θ log f(X, θ)

]
= Eθ

[
( ∂∂θ log f(X, θ))2

]
= i(θ),

and hence the inequality (8.13) follows. �

This bound can be extended to a multivariate setting.
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Theorem 8.2 (multivariate Cramér - Rao lower bound) Let X1, ...,XN be an iid sam-
ple from f(x, θ), θ ∈ Rk, and T = T (X) be an unbiased estimator of θ, i.e., Eθ[T (X)] = θ.
Suppose that the information matrix I(θ) is nonsingular and the interchangeability property
holds. Then

Varθ

(∑k
i=1 aiTi

)
≥ a′I(θ)−1a (8.15)

for any a ∈ Rk.

Proof. For a, b ∈ Rk we have (by using the interchangeability property)

Covθ

( k∑
i=1

aiTi,

k∑
j=1

bj
∂

∂θj
log f(X, θ)

)
= Covθ

( k∑
i=1

aiTi,

k∑
j=1

bj
∂f(X, θ)/∂θj
f(X, θ)

)
=

∫ ( k∑
i=1

aiTi(x)
)( k∑

j=1

bj∂f(x, θ)/∂θj

)
dx =

k∑
j=1

bj
∂

∂θj

∫ ( k∑
i=1

aiTi(x)
)
f(x, θ)dx =

k∑
j=1

bj
∂

∂θj
Eθ
[ k∑
i=1

aiTi

]
.

It follows by Cauchy inequality k∑
j=1

bj
∂

∂θj
Eθ
[ k∑
i=1

aiTi

]2

≤ Varθ

( k∑
i=1

aiTi

)
Eθ

( k∑
j=1

bj
∂

∂θj
log f(X, θ)

)2

 .
Since T is unbiased we have that Eθ

[∑k
i=1 aiTi

]
=
∑k

i=1 aiθi, and hence ∂
∂θj

Eθ
[∑k

i=1 aiTi

]
= aj .

Also Varθ

(∑k
i=1 aiTi

)
= a′Σa, where Σ is the covariance matrix of T , and

Eθ

( k∑
j=1

bj
∂

∂θj
log f(X, θ)

)2

 = b′I(θ)b.

We obtain that
(a′b)2 ≤ (a′Σa)(b′I(θ)b).

It follows that

a′Σa ≥ max
b6=0

b′(aa′)b

b′I(θ)b
.

The maximum in the right hand side of the above inequality is attained for b = I(θ)−1a (see
section 13.1.1), and hence this maximum is equal to a′I(θ)−1a. Therefore we obtain that

a′Σa ≥ a′I(θ)−1a (8.16)

for any a ∈ Rk. �

Definition 8.1 It is said that a sequence of estimators WN is asymptotically efficient for θ if√
N(WN − θ) converges in distribution to normal N (0,Σ) with covariance matrix Σ = I(θ)−1.

The basic result (8.12), of asymptotic normality of the ML estimator θ̂N , shows that the
MLE is asymptotically efficient. That is, in the standard case, under the corresponding regularity
conditions, the MLE attains asymptotically the smallest possible variance. It could be noted
that the bound (8.15) is not asymptotic. On the other hand, it assumes that the estimator T is
unbiased, while the ML estimators often are biased. There are some other concepts of the “best
possible” estimators. In the next section we briefly discuss some basic concepts.
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8.3 Best unbiased estimators

Let X1, ...,XN be an iid random sample and f(x, θ) be pdf of X = (X1, ...,XN ). By writing
Pθ it is emphasized that the probability distribution of X depends on the parameter vector θ.

Definition 8.2 A statistic T (X) is a sufficient statistic for θ if the conditional distribution of
sample X given T (X) does not depend on θ. That is, Prob(X ∈ A|T = t) is independent of θ
for all (measurable) sets A and t in the range of T .

Note that a sufficient statistic always exists, take for example T (X) = X.

Theorem 8.3 (Fisher - Neyman factorization criterion) Suppose that X has pdf f(x, θ),
θ ∈ Θ. Then T = T (X) is sufficient for θ iff f(x, θ) = g(T (x), θ)h(x).

Proof. (Sketch for discrete distribution)
Suppose that T is sufficient. Then Since X = (X1, ...,XN ) has discrete distribution, the weight
function f(x, θ) = Pθ(X = x), where x is in the range of X. Moreover

Pθ(X = x) =
∑
t

Pθ(X = x, T = t),

where the summation over possible values of T . Also since T = T (X),∑
t

Pθ(X = x, T = t) = Pθ(X = x, T = T (x)).

Then
Pθ
(
X = x, T = T (x)

)
= Pθ

(
T = T (x)

)
Pθ(X = x|T = T (x)),

where is used formula Prob(A ∩ B) = Prob(B)Prob(A|B) for events B := {T = T (x)} and
A := {X = x}.

By sufficiency of T we have that the conditional probability h(x) := Pθ
(
X = x|T =

T (x)
)

does not depend on θ. Define g(T (x), θ) := Pθ(T = T (x)). It follows that f(x, θ) =
g(T (x), θ)h(x). This shows that sufficiency implies factorization.

Now suppose that f(x, θ) = g(T (x), θ)h(x). Then when T (x) = t we have

Pθ(X = x|T = t) =
Pθ(X = x, T = t)

Pθ(T = t)
=

g(T (x), θ)h(x)∑
T (y)=t g(T (y), θ)h(y)

=
g(T (x), θ)h(x)∑
T (y)=t f(y, θ)

=
g(t, θ)h(x)∑

T (y)=t g(t, θ)h(y)
=

h(x)∑
T (y)=t h(y)

,

which does not depend on θ. If T (x) 6= t, then Pθ(X = x|T = t) = 0. It follows that T (X) is
sufficient. �

Let T (X) be a sufficient statistic for θ. Then by the Factorization Theorem, the likelihood
function

LN (θ) = f(x, θ) = g(T (x), θ)h(x).

It follows that the MLE θ̂ is a function of T , i.e.,

θ̂ ∈ arg max
θ

g(T (x), θ).

32



Definition 8.3 A sufficient statistic T = T (X) is said to be minimal sufficient if for any other
sufficient statistic S = S(X), there exists a function g(·) such that T = g(S).

Theorem 8.4 (Lehmann - Scheffe) Suppose that there exists T (X) such that for any x and

y, the ratio f(x,θ)
f(y,θ) is independent of θ if only if T (x) = T (y). Then T (X) is a minimal sufficient

statistic for θ.

Proof. Let us show that T (X) is sufficient. For t in the image of T (x) consider sets
At = {x : T (x) = t}. For t in the image of T (x), consider a point xt ∈ At. We have that xT (x)

and x are in the same set At, i.e., T (x) = T (xT (x)), and hence by the assumption of the theorem,
the ratio f(x, θ)/f(xT (x), θ) does not depend on θ. Define h(x) = f(x, θ)/f(xT (x), θ), θ) and
g(t, θ) = f(xt, θ). Then

f(x, θ) =
f(xT (x), θ)f(x, θ)

f(xT (x), θ)
= g(T (x), θ)h(x).

It follows by the Factorization Theorem that T (X) is a sufficient statistic.
Let us show that T (X) is minimal sufficient. Let T ′(X) be a sufficient statistic. By the

Factorization Theorem, f(x, θ) = g(T ′(x), θ)h(x). Suppose that T ′(x) = T ′(y). Then

f(x, θ)

f(y, θ)
=
g(T ′(x), θ)h(x)

g(T ′(y), θ)h(y)
=
h(x)

h(y)
.

Since this ratio does not depend on θ, it follows by the assumption of theorem that T (x) = T (y).
That is, T ′(x) = T ′(y) implies that T (x) = T (y). It follows that T (X) is a function of T ′(X).

�
Note that the second part of the above proof shows that a sufficient statistic T (X) is minimal

sufficient if the following implication holds: if the ratio f(x, θ)/f(y, θ) does not depend on θ,
then T (x) = T (y).

Example 8.2 Consider exponential family of distributions in the canonical form (see eq. (7.1)),

f(x, θ) = exp
{ k∑
i=1

θiTi(x)−A(θ)
}
h(x), (8.17)

with parameter space

Θ =

{
θ :

∫
exp

{ k∑
i=1

θiTi(x)
}
h(x)dx <∞

}
.

It follows by the Factorization Theorem that (T1(X), ..., Tk(X)) is a sufficient statistic. Note
that the set Θ is convex. Also

f(x, θ)

f(y, θ)
= exp

{ k∑
i=1

θi
(
Ti(x)− Ti(y)

)}h(x)

h(y)
.

Suppose that the set Θ has a nonempty interior. Then if the ratio f(x, θ)/f(y, θ) does not
depend on θ, then Ti(x) = Ti(y), i = 1, ..., k. Indeed if this ratio does not depend on θ, then

∂

∂θi
exp

{ k∑
i=1

θi
(
Ti(x)− Ti(y)

)}h(x)

h(y)
=
(
Ti(x)− Ti(y)

)
exp

{ k∑
i=1

θi
(
Ti(x)− Ti(y)

)}h(x)

h(y)

is zero at every interior point of the set Θ. It follows that Ti(x) = Ti(y). This implies that
(T1(X), ..., Tk(X)) is minimal sufficient. �

33



We assume in the remainder of this section that g : Θ → R is a real valued (measurable)
function.

Definition 8.4 An estimator T = T (X) of g(θ) is a best unbiased estimator if Eθ[T ] = g(θ)
for all θ ∈ Θ, and for any unbiased estimator S = S(X) of g(θ) it follows that

Varθ[T ] ≤ Varθ[S], ∀θ ∈ Θ.

Best unbiased estimator is called Uniform Minimum Variance Unbiased (UMVU) estimator.

Finding an UMVU estimator could be not easy. The following result shows that conditioning
of any unbiased estimator on a sufficient statistic will result in uniform reduction of the variance.
Therefore if an UMVU estimator exists, then it is a function of (minimal) sufficient statistic.

For random variables X and Y , we use below property E[X] = E[E[X|Y ]] of conditional
expectation, and the following formula

Var(X) = E[Var(X|Y )] + Var[E(X|Y )], (8.18)

for conditional variance
Var(X|Y ) = E

[(
X − E(X|Y )

)2|Y ].
Indeed

Var(X) = E[(X − E(X))2] = E
[
E[(X − E(X))2]|Y

]
= E

[
E
[(
X − E(X|Y ) + E(X|Y )− E(X)

)2]|Y ]
= E

[
E[(X − E(X|Y ))2|Y︸ ︷︷ ︸

Var(X|Y )

]
]

+ E
[
(E(X|Y )− E(X))2

]︸ ︷︷ ︸
Var[E(X|Y )]

.

In the above derivation we used that

E[(E(X|Y )− E(X))2|Y ] = E[(E(X|Y )− E(X))2],

since (E(X|Y )− E(X))2 is a function of Y , and that

E
[
(E[(X − E(X|Y )])(E(X|Y )− E(X))|Y

]
= E

[
(E(X − E(X|Y )|Y )(E(X|Y )− E(X))

]
= 0.

Theorem 8.5 (Rao - Blackwell) Let W be an unbiased estimator of g(θ), and T be a suffi-
cient statistic for θ. Define h(t) := E[W |T = t]. Then Eθ[h(T )] = g(θ) and

Varθ[h(T )] ≤ Varθ[W ], ∀θ ∈ Θ. (8.19)

Moreover, unless Pθ{W = h(T )} = 1, the inequality (8.19) is strict.

Proof. Note that by sufficiency of T , h(T ) does not depend on θ and hence is a statistic.
We have that

Eθ[h(T )] = Eθ
[
E[W |T = t]

]
= Eθ[W ] = g(θ).

That is h(T ) is an unbiased estimator of g(θ). Now by using formula (8.18) for conditional
variance

Varθ[W ] = Varθ[E(W |T )] + Eθ[Var(W |T )]

= Varθ[h(T )] + Eθ[Var(W |T )] ≥ Varθ[h(T )],

and hence (8.19) follows. Moreover, Eθ[Var(W |T )] > 0 and hence the inequality (8.19) is strict
unless Pθ{W = h(T )} = 1. �
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Theorem 8.6 An UMVU estimator W (if it exists) of g(θ) is unique.

Proof. Let W ′ be another UMVU estimator of g(θ). Then W ∗ = (W +W ′)/2 is unbiased
and

Varθ(W
∗) = 1

4Varθ(W ) + 1
4Varθ(W

′) + 1
2Covθ(W,W

′).

Now by Cauchy inequality

Covθ(W,W
′) ≤ [Varθ(W ) ·Varθ(W

′)]1/2,

and Varθ(W ) = Varθ(W
′) by the minimum variance assumption. Hence Varθ(W

∗) ≤ Varθ(W ).
Since W is UMVU it follows that Varθ(W

∗) = Varθ(W ) for all θ ∈ Θ. The equality in Cauchy
inequality holds only if W ′ = a(θ)W + b(θ). Then

Covθ(W,W
′) = Covθ(W,a(θ)W + b(θ)) = a(θ)Varθ(W ).

Also by the above we have that Covθ(W,W
′) = Varθ(W ) and hence a(θ) ≡ 1. Moreover

Eθ[W ′] = g(θ) = Eθ[W ] and hence b(θ) ≡ 0. It follows that W = W ′. �

Definition 8.5 Loss function (for estimating g(θ)) is a nonnegative valued function L(θ, a),
θ ∈ Θ, a ∈ R, such that L(θ, g(θ)) = 0 for all θ ∈ Θ. Risk function R(θ, T ) := Eθ[L(θ, T (X))],
where T (X) is an estimator of g(θ).

For example L(θ, a) := |a− g(θ)|p, p > 0, is a loss function. If L(θ, a) = (g(θ)− a)2, then

R(θ, T ) = Eθ[(g(θ)− T (X))2]

is the Mean Square Error of estimator T of g(θ).

Theorem 8.7 (Another version of Rao - Blackwell theorem) Let L(θ, a) be a loss func-
tion, W be a sufficient statistic and h(t) = E[W |T = t]. Suppose that L(θ, ·) is strictly convex.
Then

R(θ, h(T )) ≤ R(θ,W ), (8.20)

and the above inequality is strict unless Pθ{W = h(T )} = 1.

Proof. By using Jensen’s inequality

R(θ, h(T )) = Eθ
[
L
(
θ,E[W |T ]

)]
≤ Eθ

[
E[L(θ,W )|T ]

]
= Eθ[L(θ,W )] = R(θ,W ).

The inequality (8.20) follows and this inequality is strict unless Pθ{W = h(T )} = 1. �

9 Hypotheses testing

Let X = (X1, ...,XN ) be a random sample (data). Consider testing H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1, where Θ0,Θ1 ⊂ Rk. A procedure for such testing consists of choosing a set
R ⊂ Rd, referred to as the rejection region, and hence defining its complement Rc = Rd \ R
referred to as the acceptance region, where d is the dimension of X. That is, reject H0 if X ∈ R.
Alternatively this can be formulated as accept H0 if X ∈ Rc. Rejecting H0 automatically means
acceptance H1, and acceptance H0 means rejection of H1.
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There are two types of errors, type I error - reject H0 when H0 is true, type II error -
accept H0 when H0 is false. The corresponding probabilities α = Pθ(type I error) and β =
Pθ(type II error). That is

α = Pθ(X ∈ R), θ ∈ Θ0,

β = Pθ(X ∈ Rc), θ ∈ Θ1.

Power of the test is 1−β = Pθ(X ∈ R), θ ∈ Θ1. Note that α = α(θ) and β = β(θ) are functions
of θ.

Theorem 9.1 (Neyman - Pearson Lemma) Consider simple alternatives H0 : θ = θ0 ver-
sus H1 : θ = θ1 with respective pdfs f(x, θ0) and f(x, θ1). Then the minimal error rejection
region is

R = {x ∈ Rd : f(x, θ1) ≥ κf(x, θ0)}, (9.1)

where κ > 0 is such that
∫
R f(x, θ0)dx = α.

Proof. Note that
∫
R f(x, θ0)dx = α and

∫
Rc f(x, θ1)dx = β. We want to choose region

R, or equivalently Rc, such that the probability of type I error equals the significance level α,
and the probability of type II error is the smallest possible. For a constant κ > 0 this can be
formulated as minimization of ∫

Rc
f(x, θ1)dx+ κ

∫
R
f(x, θ0)dx,

with respect to R (or equivalently with respect to Rc), subject to
∫
R f(x, θ0)dx = α. Since

R = Rd \Rc we have that∫
R
f(x, θ0)dx =

∫
Rd
f(x, θ0)dx−

∫
Rc
f(x, θ0)dx.

Moreover
∫
Rd f(x, θ0)dx = 1, and hence∫

Rc
f(x, θ1)dx+ κ

∫
R
f(x, θ0)dx = κ+

∫
Rc

[f(x, θ1)− κf(x, θ0)]dx.

It follows that the minimum is attained for

Rc = {x : f(x, θ1)− κf(x, θ0) < 0},

or equivalently for
R = {x : f(x, θ1)− κf(x, θ0) ≥ 0}.

Note that for κ = 0 the rejection region R = Rd and hence α = 1. By increasing κ the
refection region shrinks and

∫
R f(x, θ0)dx continuously decreases and tends to zero. Therefore

we can choose κ such that
∫
R f(x, θ0)dx = α. �

Suppose that T (X) is a sufficient statistic for θ. By Factorization Theorem (Theorem 8.3),
f(x, θ0) = g(T (x), θ0)h(x) and f(x, θ1) = g(T (x), θ1)h(x). Therefore the rejection region (9.1)
can be written as

R = {x : g(T (x), θ1) ≥ κ g(T (x), θ0)}.
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9.1 Likelihood Ratio Test

Consider

λ(x) :=
supθ∈Θ L(θ)

supθ∈Θ0
L(θ)

,

where Θ = Θ0 ∪ Θ1 and L(θ) = f(x, θ) is the corresponding likelihood function. Note that
λ(x) ≥ 1 since Θ0 ⊂ Θ. The rejection region of the Likelihood Ratio Test (LRT) is

R = {x : λ(x) ≥ c},

for some c > 1. That is, the H0 is rejected for large value of the LRT statistic.
If T (X) is a sufficient statistic for θ, then by the Factorization Theorem

λ(x) =
supθ∈Θ g(T (x, θ))

supθ∈Θ0
g(T (x, θ))

.

That is, the LRT can be formulated in terms of the sufficient statistic T (X). For simple
alternatives when Θ0 = {θ0} and Θ1 = {θ1} we have that

λ(x) =
max{L(θ0), L(θ1)}

L(θ0)
= max

{
1, f(x, θ1)/f(x, θ0

}
,

and hence this is equivalent to the rejection region of the Neyman - Pearson Lemma.
Let us discuss asymptotics of the LRT. We will discuss this for the simple hypothesis

H0 : θ = θ0 against the unrestricted alternative H1 : θ ∈ Rk. We have that

2 log λ(X) = −2 logL(θ0) + 2 sup
θ∈Rk

logL(θ).

Note that
sup
θ∈Rk

logL(θ) = logL(θ̂),

where θ̂ is the ML estimator under the unrestricted alternative H1. Consider

S(θ) :=
∂

∂θ
logL(θ) =

N∑
i=1

∂

∂θ
log f(Xi, θ), (9.2)

called the score function. Note that S(θ̂) = 0 (necessary optimality condition), and Eθ[S(θ)] = 0
(see equation (8.7)). Now using second order Taylor approximation,

logL(θ̂) ≈ logL(θ0) +
[
∂
∂θ logL(θ0)

]′
(θ̂ − θ0) + 1

2(θ̂ − θ0)′
[

∂2

∂θ∂θ′
logL(θ0)

]
(θ̂ − θ0).

Note that ∂
∂θ logL(θ0) = S(θ0) and ∂2

∂θ∂θ′
logL(θ0) = ∂

∂θ′
S(θ0). Hence and since S(θ̂) = 0,

logL(θ̂) ≈ logL(θ0)−
[
S(θ̂)− S(θ0)

]′
(θ̂ − θ0) + 1

2(θ̂ − θ0)′
[
∂
∂θ′
S(θ0)

]
(θ̂ − θ0).

Also first order approximation of the score function:

S(θ̂)− S(θ0) ≈
[
∂

∂θ′
S(θ0)

]
(θ̂ − θ0).
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Therefore

2 log λ(X) = −2 logL(θ0) + 2 logL(θ̂)

≈ (θ̂ − θ0)′
[
− ∂2

∂θ∂θ′
logL(θ0)

]
(θ̂ − θ0)

=
[√
N(θ̂ − θ0)

]′ [− 1

N

∂2

∂θ∂θ′
logL(θ0)

] [√
N(θ̂ − θ0)

]
.

Assuming H0, we have that
√
N(θ̂−θ0) converges in distribution to N (0, I(θ0)−1), and by (8.4)

and the LLN,

− 1

N

∂2

∂θ∂θ′
logL(θ0) = − 1

N

∂2

∂θ∂θ′

N∑
i=1

log f(Xi, θ0)

converges in probability to I(θ0). It follows that under H0, the statistic 2 log λ(X) converges in
distribution to the quadratic form Z ′[I(θ0)]Z, where Z ∼ N (0, I(θ0)−1). By theorem 3.1 this
implies that 2 log λ(X) converges in distribution to χ2

k. �

In general 2 log λ(X) converges in distribution to χ2
k−q under H0, where Θ0 ⊂ Rk is a smooth

manifold of dimension q = dim Θ0.

Power of the LRT under local alternatives
Suppose the following so-called parameter drift (local alternatives) for testing H0 : θ = θ0

against H1 : θ0,N = θ0 +N−1/2b, where b ∈ Rk is a fixed vector. Then

√
n(θ̂ − θ0) =

√
N(θ̂ − θ0,N ) +

√
N(θ0,N − θ0) =

√
N(θ̂ − θ0,N ) + b N(b, I(θ0)−1).

Hence under local alternatives

2 log λ ≈ [
√
N(θ̂ − θ0)]′I(θ0)[

√
N(θ̂ − θ0)]

can be approximated by the noncentral chi-square distribution χ2
k(δ) with the noncentrality

parameter δ = b′I(θ0)b (Theorem 3.3).

9.2 Testing equality constraints

Consider testing H0 : a(θ) = (a1(θ), ..., aq(θ))′ = 0 against H1 : a(θ) 6= 0. Let

θ̂ = arg max
θ∈Rk

L(θ) and θ̃ = arg max
a(θ)=0

L(θ)

be the respective unrestricted and restricted ML estimators. We have here that the 2log Likeli-
hood Ratio Test (LRT) statistic is 2[logL(θ̂) − logL(θ̃)]. Under H0 (and the regularity condi-
tions) this test statistic converges in distribution to χ2

q .

Wald test statistic. Consider testing (linear4) equality constraints H0 : Aθ = c against
H1 : Aθ 6= c, where A is q × k matrix of full row rank q. The Wald test statistic is

W := N(Aθ̂ − c)′(A I(θ̂)−1A′)−1(Aθ̂ − c).
4For nonlinear constraints we can use A = ∂a(θ̂)/∂θ′.
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Suppose that the corresponding regularity conditions hold so that the (unrestricted) ML
estimator θ̂ is a consistent estimator of the population value θ∗ of the parameter vector, and√
N(θ̂ − θ∗) N (0, I(θ∗)−1). Then under H0 (i.e., Aθ∗ = c)

√
NA(θ̂ − θ∗) =

√
N(Aθ̂ − c) N (0,A I(θ∗)−1A′).

It follows that under H0 the Wald test statistic converges in distribution to Z ′(A I(θ∗)−1A′)−1Z,
where Z ∼ N (0,A I(θ∗)−1A′). Therefore by Theorem 3.1, under H0 the Wald test statistic
converges in distribution to χ2

q .
Note that the LRT

2
[

logL(θ̂)− logL(θ̃)
]
≈ inf
Aθ=c

[
√
N(θ̂ − θ∗)]′

[
− 1

N

∂2

∂θ∂θ′
logL(θ∗)

]
[
√
N(θ̂ − θ∗)].

Also using formula (8.4) for the information matrix and L(θ∗) = f(x, θ∗), by the LLN we have

that − 1
N

∂2

∂θ∂θ′
logL(θ∗) ≈ I(θ∗) under H0. Therefore under H0, the LRT and Wald test statistics

are asymptotically equivalent.

Score function test statistic. Consider testing H0 : θ = θ0 against H1 : θ 6= θ0. The score
function test statistic is

N−1S(θ0)′I(θ0)−1S(θ0),

where S(θ) is the score function (see equation (9.2)). Recall that Eθ[S(θ)] = 0 and N−1/2S(θ)
converges in distribution to N (0, I(θ)). It follows that under H0,

N−1S(θ0)′I(θ0)−1S(θ0) χ2
k.

In general, under H0,
N−1S(θ̃)′I(θ̃)−1S(θ̃) χ2

q

when testing q equality constraints.

10 Multinomial distribution

Consider Y = (Y1, ..., Yk)
′ with Y1 + ...+ Yk = N and

Prob(Y = y) =
N !

y1!× · · · × yk!

k∏
i=1

pyii ,

where pi > 0, i = 1, ..., k, and p1 + ... + pk = 1. We denote this as Y ∼ Mult(N,p), where
p = (p1, ..., pk)

′. In particular, for k = 2 this becomes binomial distribution Y ∼ B(N, p) with

Prob(Y = y) =
(
N
y

)
py(1− p)N−y, y = 0, 1, ..., N .

The log-likelihood function, up to a constant independent of p, is L(p) =
∑k

i=1 Yi log pi.
Therefore the ML estimator of p is given by the solution of the problem:

max
p≥0

k∑
i=1

Yi log pi subject to p1 + ...+ pk = 1.

It follows that the ML estimators are p̂i = Yi/N , i = 1, ..., k.
If Y ∼ Mult(N,p), then the covariance matrix Cov(Y ) = NC, where cii = pi(1 − pi),

i = 1, ..., k and cij = −pipj , i 6= j.
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Indeed each Yi has binomial distribution with probability of success pi and hence Var(Yi) =
Npi(1−pi). Moreover, Yi+Yj , i 6= j, has binomial distribution with probability of success
pi + pj and hence

Var(Yi + Yj) = N(pi + pj)(1− pi − pj) = N(pi − p2
i + pj − p2

j − 2pipj).

On the other hand

Var(Yi + Yj) = Var(Yi) + Var(Yj) + 2Cov(Yi, Yj),

and Var(Yi) = N(pi − p2
i ), Var(Yj) = N(pj − p2

j ). It follows that Cov(Yi, Yj) = −Npipj .

This can be written as C = P − pp′, where P = diag(p1, ..., pk) and p = (p1, ..., pk)
′. Note that

C1k = 0 and rank(C) = k − 1.
Consider testing H0 : p = p∗ against H1 : p 6= p∗. The corresponding log LRT statistic is

log λ =

k∑
i=1

Yi log p̂i −
k∑
i=1

Yi log p∗i =

k∑
i=1

Yi log
p̂i
p∗i
.

Note that (second order Taylor approximation of log x at x = 1)

log x = x− 1− 1
2(x− 1)2 + o(x− 1)2.

Under H0 values p̂i are close to p∗i and hence

k∑
i=1

Yi log
p̂i
p∗i

= −
k∑
i=1

Yi log
p∗i
p̂i
≈ −

k∑
i=1

Yi

(
p∗i
p̂i
− 1

)
+ 1

2

k∑
i=1

Yi

(
p∗i
p̂i
− 1

)2

.

Moreover
k∑
i=1

Yi

(
p∗i
p̂i
− 1

)
=

k∑
i=1

(Np∗i − Yi) = 0,

since
∑k

i=1 p
∗
i = 1 and

∑k
i=1 Yi = N . Hence under H0,

2 log λ = 2

k∑
i=1

Yi log
p̂i
p∗i
≈

k∑
i=1

(Yi −Np∗i )2

Yi
≈

k∑
i=1

(Yi −Np∗i )2

Np∗i
,

where in the last approximation we used p∗i ≈ p̂i = Yi/N . Values Yi are called observed frequen-

cies, Np∗i are called expected frequencies, and
∑m

i=1
(Yi−Np∗i )2

Np∗i
is the famous Pearson’s chi-square

test statistic. We see that the LRT statistic 2
∑k

i=1 Yi log p̂i
p∗i

and Pearson’s statistic asymptoti-

cally are equivalent under H0. Pearson’s statistic can be viewed as quadratic approximation of
the LRT statistic.

We can write Pearson’s statistic as

k∑
i=1

(Yi −Np∗i )2

Np∗i
= N(p̂− p∗)′Q(p̂− p∗),

where p̂ = (Y1/N, ..., Yk/N)′ and Q := diag(1/p∗1, ..., 1/p
∗
k). By the CLT, under H0,

√
N(p̂−p∗)

converges in distribution to normal Nk(0,C). Recall that since 1′kp̂ = 1 and 1′kp
∗ = 1, the
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covariance matrix C has rank k − 1, and hence is singular. Therefore the normal distribution
Nk(0,C) is degenerate.

Consider Z ∼ Nk(0,C), let us show that Z ′QZ has χ2
k−1 distribution. For W := Q1/2Z

we have that W ′W = Z ′QZ and W ∼ Nk
(
0,M), where M := Ik − (p∗1/2)(p∗1/2). Matrix

M is a projection matrix of rank

rank(M) = tr
(
Ik − (p∗1/2)(p∗1/2)′

)
= k − (p∗1/2)′(p∗1/2) = k −

∑k
i=1 p

∗
i = k − 1.

Since M is a projection matrix of rank k−1, it has k−1 eigenvalues equal 1 and one eigenvalue
0. Therefore it has the spectral decomposition M = TΛT ′ with Λ = diag(1, ..., 1, 0). Consider
Y := T ′W . Since matrix T is orthogonal we have thatW ′W = Y ′Y . Also Y ∼ Nk(0,T ′MT ).
Since the last element of matrix T ′MT = Λ is zero it follows that Var(Yk) = 0 and hence Yk ≡ 0.
Therefore Y ′Y = Y 2

1 + ...+ Y 2
k−1 ∼ χ2

k−1. It follows that under H0, N(p̂− p∗)′Q(p̂− p∗) con-
verges in distribution to χ2

k−1. �

General model: p = p(θ), θ ∈ Rq, with
∑k

i=1 pi(θ) = 1. The ML estimator of parameter
vector θ is solution of the optimization problem

max
θ

k∑
i=1

Yi log pi(θ).

Suppose that the model is correct, i.e., there is θ∗ ∈ Rq such that p∗ = p(θ∗), where p∗ is the
true (population) value of the parameter vector. Suppose further that the model is identified at
θ∗, i.e., if p(θ) = p(θ∗), then θ = θ∗. Let p̃ be a consistent estimator of p∗. Then asimptotically
the ML estimation is equivalent to

min
θ

(p̂− p(θ))′Q̃(p̂− p(θ)),

where p̂i = Yi/N , i = 1, ..., N and Q̃ = diag(1/p̃1, ..., 1/p̃k).
We have here that

√
N(θ̂−θ∗) converges in distribution to normal N (0, I(θ∗)−1) with I(θ) =

P (θ)′C(θ)P (θ), where P (θ) = ∂ log p(θ)/∂θ′ is m × q matrix and C(θ) = P (θ) − p(θ)p(θ)′.
The LRT for testing H0 : p = p(θ) against the unrestricted alternative is

2 log λ = 2
k∑
i=1

Yi log
Yi/N

pi(θ̃)
,

where θ̃ is the MLE under H0. Under H0, the LRT statistic 2 log λ converges in distribution to
χ2
k−1−q, and asymptotically is equivalent to Pearson’s statistic.

11 Logistic regression

Let Y1, ..., YN be independent random variables such that Yi has the binomial distribution
B(mi, πi), i = 1, ..., N . Consider the logit model:

πi =
exp(β0 + β1Xi1 + ...+ βkXik)

1 + exp(β0 + β1Xi1 + ...+ βkXik)
, i = 1, ..., N, (11.1)

where β0, ..., βk are parameters. That is

log
πi

1− πi
= β0 + β1Xi1 + ...+ βkXik, i = 1, ..., N,
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where πi
1−πi is called the odds ratio.

We can write this model in the matrix form

η = Xβ, (11.2)

where ηi := log πi
1−πi , i = 1, ..., N , and X = [1N ,X1, ...,Xk] is the design matrix. As in the

linear regression we assume that matrix X has full column rank p = k+1. The multicollinearity
problem can also happen here when columns of the design matrix are ‘almost’ linearly dependent.

We have that

P (Yi = yi) =

(
mi

yi

)
πyii (1− πi)mi−yi , yi = 0, 1, ...,mi.

It follows that the likelihood function here is

L(π;y) = c

n∏
i=1

πyii (1− πi)mi−yi ,

where the constant c =
∏n
i=1

(
mi
yi

)
is independent of π. Hence up to the constant log c inde-

pendent of π, the log likelihood function logL(π;y) can be written as

l(π;y) =
n∑
i=1

[
yi log πi + (mi − yi) log(1− πi)

]
,

(note that, by definition, 0× log 0 = 0).
Fisher’s information matrix, for β = (β0, ..., βk)

′, can be written in the form X ′WX, where
W is a diagonal matrix given by

W = diag{m1π1(1− π1), ...,mnπn(1− πn)}.

Indeed, we have that
∂l

∂πi
=
yi −miπi
πi(1− πi)

,

and hence
∂l

∂βs
=

n∑
i=1

yi −miπi
πi(1− πi)

∂πi
∂βs

,

where
∂πi
∂βs

= πi(1− πi)Xsi.

Consequently the st-element of Fisher’s information matrix is

E
[ ∂l
∂βs

∂l

∂βt

]
= E

∑
i,j

(Yi −miπi
πi(1− πi)

∂πi
∂βs

)(Yj −mjπj
πj(1− πj)

∂πj
∂βt

) , s, t = 0, ..., k.

Moreover, E[Yi] = miπi, and hence (by independence)

E
[
(Yi −miπi)(Yj −mjπj)

]
= 0, if i 6= j,

and
E
[
(Yi −miπi)

2
]

= Var[Yi] = miπi(1− πi), i = 1, ..., n.
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It follows that

E
[ ∂l
∂βs

∂l

∂βt

]
=

n∑
i=1

mi

πi(1− πi)
∂πi
∂βs

∂πi
∂βt

=
n∑
i=1

miπi(1− πi)XsiXti.

The maximum likelihood (ML) equations are

n∑
i=1

(yi −miπi)Xsi = 0, s = 0, ..., k.

Consider the log-likelihood function l(·;y) as a function of x with π = π(x). We have that the
terms yi log πi are linear functions of x, the terms (mi − yi) log(1 − πi) consist of linear terms
and terms of the form −(mi − yi) log(1 + exp(1 + β′x)). Since the function φ(x) = log(1 + ex)
is strictly convex, it follows that l(·;y) is strictly concave function of x, and hence the ML
equations for estimating β have unique solution β̂ (recall that the design matrix in (11.2) is
assumed to have full column rank).

Consider

π̂i =
exp(β̂0 + β̂1Xi1 + ...+ β̂kXik)

1 + exp(β̂0 + β̂1Xi1 + ...+ β̂kXik)
, i = 1, ..., n,

and the following so-called deviance function,

Λ = −2l(π̃;y) + 2l(π̂;y),

where π̃ is the ML estimate of π under a specified H0. That is, Λ is the log-likelihood ratio test
statistic 2 log λ for testing H0. In particular, for H0 : β1 = ... = βk = 0 we have that π̃i = π̃,

i = 1, ..., N , where π̃ =
∑N
i=1 yi∑N
i=1mi

.

If mi = 1, i = 1, ..., N , then Y1, ..., YN become Bernoulli random variables with P (Yi = 1) =
πi and P (Yi = 0) = 1− πi. In that case

l(π;y) =
N∑
i=1

[
yi log πi + (1− yi) log(1− πi)

]
.

For H0 : β1 = ... = βk = 0 we have that π̃i = π̃, i = 1, ..., N , where π̃ =
∑N
i=1 yi
N , and hence

l(π;y) =
(∑N

i=1 yi

)
log π̃.

12 Generalized linear models

Let Y = (Y1, ..., YN )′ be a vector of responses whose components are independently distributed
with means µ = (µ1, ..., µN )′, i.e., µi = E[Yi], i = 1, ..., N . The linear model assumes that
µi = x′iβ, i = 1, ..., N , where β is k × 1 vector of parameters and xi = (1, xi1, ..., xik)

′ are
observed values of the predictors. That is, the conditional expectation E[Yi|Xi = xi] = x′iβ,
i = 1, ..., N .

This can be generalized in the following way. Let us introduce a linear predictor

ηi = x′iβ, i = 1, ..., N. (12.1)

The new symbol η is related to µ by the equation η = g(µ), where g(·) is a specified function
called the link function. That is

ηi = g(µi), i = 1, ..., N,
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and
µi = g−1(x′iβ), i = 1, ..., N.

We also can write it in the matrix form

η = Xβ,

where X is the design matrix with rows (1, Xi1, ..., Xik), i = 1, ..., N . As before it is assumed
that the design matrix has full column rank.

For example, in the linear case η = µ, i.e., g(µ) = µ. In the logistic regression g(π) = log π
1−π

is the logit link function.
Suppose now that each component Yi of the response vector has a distribution in the expo-

nential family with pdf of the form

fY (y; θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
(12.2)

for some specified functions a(·), b(·) and c(·). The parameter θ is called the natural parameter,
and the parameter φ the dispersion parameter. For example for the normal distribution N (µ, σ2)
we can write the corresponding density

f(y) =
1√
2πσ

exp

(
−(y − µ)2

2σ2

)
in the form (12.2) with θ = µ, φ = σ and

a(φ) = φ2, b(θ) = θ2/2, c(y, φ) = − 1
2{y

2/φ2 + log(2πφ2)}.

If φ is known, then a(φ) is viewed as a constant, c(y, φ) = c(y), and (12.2) becomes an exponential
family in the canonical form with canonical parameter θ.

Consider

l(y; θ, φ) = log fY (y, θ, φ) =
yθ − b(θ)
a(φ)

+ c(y, φ). (12.3)

By the standard theory of the ML we have that

E[∂l/∂θ] = 0, (12.4)

E[∂2l/∂θ2] = −E[(∂l/∂θ)2]. (12.5)

Also by (12.3)

∂l/∂θ =
y − b′(θ)
a(φ)

and because of (12.4), E[Y − b′(θ)] = 0. Thus E[Y ] = b′(θ), that is (compare with (7.2))

µ = b′(θ).

Moreover
∂2l/∂θ2 == −b′′(θ)/a(φ)

and hence b′′(θ)/a(φ) = Var(Y )/a2(φ) and thus (compare with (7.3))

Var(Y ) = b′′(θ)a(φ).
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For binomial distribution B(m,π)/m the corresponding distribution function is

P (Y = y) =

(
m

my

)
πmy(1− π)m(1−y), y = 0, 1/m, ..., 1.

Let us set θ = log π
1−π as the natural parameter, and hence π = eθ

1+eθ
. Here µ = π and

thus µ = eθ

1+eθ
. Assume that m is known and set φ = 1/m, a(φ) = φ, b(θ) = log(1 + eθ),

c(y, φ) = log
(
m
my

)
. Note that 0 log 0 = 0, and hence for m = 1 we have that φ = 1 and

c(y, φ) = 0. The link function here is logit g(π) = log π
1−π .

For Poisson distribution

P (Y = y) =
1

y!
e−µµy, y = 0, 1, 2, ...,

with parameter µ > 0. Note that µ = E[Y ] here. This can be written as

P (Y = y) = exp{y logµ− µ− log(y!)}, y = 0, 1, 2, ...

We have here that µ = E[Y ] and θ = logµ is the natural parameter with b(θ) = eθ, a(φ) = 1
and c(y) = − log(y!). The link function here is g(µ) = logµ.

In the canonical case (when φ is known) the model is θi = ηi, i = 1, ..., n, with ηi being
linear predictors specified in equation (12.1). In order to compute the ML estimate of β we
need to maximize the corresponding log-likelihood function (given in (12.3)), that is to solve the
problem

max
β

n∑
i=1

Yix
′
iβ − b(x′iβ). (12.6)

When b(·) is a convex function, the above problem (12.6) is convex. For the binomial and Poisson
distributions the corresponding functions b(·) are convex.

13 Classification problem

Consider an m× 1 random vector X of measurements. We want to classify X into one of two
population π1 or π2. Let p1(x) and p2(x) be respective densities (pdfs) of populations π1 and
π2. Suppose that the probability that an observation comes from population πi is qi, i = 1, 2.
Consider regions R1 ⊂ Rm and R2 = Rm \ R1. If X ∈ R1 we classify X as from π1, and if
X ∈ R2 we classify X as from π2. Then the probability of misclassification of an observation
from π1 is

Prob(X ∈ R2|π1) =

∫
R2

p1(x)dx.

Similarly the probability of misclassification of an observation from π2 is
∫
R1
p2(x)dx. The

expected loss of misclassification is

c1q1

∫
R2

p1(x)dx+ c2q2

∫
R1

p2(x)dx,

where ci is the cost of misclassification of an observation from πi, i = 1, 2.
Note that ∫

R1

p2(x)dx =

∫
Rm\R2

p2(x)dx =

∫
Rm

p2(x)dx−
∫
R2

p2(x)dx.
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Suppose that c1 = c2 = 1. Then the probability (expected loss) of misclassification is

q1

∫
R2

p1(x)dx+ q2

∫
R1

p2(x)dx =

∫
R2

[q1p1(x)− q2p2(x)]dx+ q2

∫
Rm

p2(x)dx.

Since p2(·) is a probability density function, we have that
∫
Rm p2(x)dx = 1, and hence

q1

∫
R2

p1(x)dx+ q2

∫
R1

p2(x)dx =

∫
R2

[q1p1(x)− q2p2(x)]dx+ q2.

It follows that the expected loss is minimized if

R2 = {x ∈ Rm : q1p1(x)− q2p2(x) < 0}.

Or equivalently

R1 =

{
x ∈ Rm : p1(x) ≥ q2

q1
p2(x)

}
and

R2 =

{
x ∈ Rm : p1(x) <

q2

q1
p2(x)

}
.

If the costs c1 and c2 are unequal, then the optimal regions are

R1 =

{
x ∈ Rm : p1(x) ≥ c2q2

c1q1
p2(x)

}
and

R2 =

{
x ∈ Rm : p1(x) <

c2q2

c1q1
p2(x)

}
.

If c1q1p1(x) = c2q2p2(x), we can take such points either in R1 or R2.
It could be noted that the above derivations basically are the same as derivation of the

Neyman - Pearson Lemma in section 9. The only difference is that the misclassification errors
are treated here symmetrically, unlike in the hypothesis testing.

13.1 Classification with normally distributed populations

Suppose that the populations π1 and π2 have multivariate normal distributions with equal
covariance matrices, i.e., πi ∼ N (µi,Σ), i = 1, 2. Then

pi(x) =
1

(2π)m/2|Σ|1/2
exp

{
− (x− µi)′Σ−1(x− µi)/2

}
,

and
p1(x)

p2(x)
= exp

{
− 1

2

[
(x− µ1)′Σ−1(x− µ1)− (x− µ2)′Σ−1(x− µ2)

]}
.

Hence the optimal region is

R1 =
{
x : (x− µ1)′Σ−1(x− µ1)− (x− µ2)′Σ−1(x− µ2) ≤ −2κ

}
,

where κ = log(c2q2/c1q1). Equivalently

R1 =
{
x : x′Σ−1(µ1 − µ2) ≥ 1

2(µ1 + µ2)′Σ−1(µ1 − µ2) + κ
}
. (13.1)

Note that if X ∼ N (µi,Σ), then X ′Σ−1(µ1 − µ2) has normal distribution with mean
µ′iΣ

−1(µ1−µ2) and variance (µ1−µ2)′Σ−1(µ1−µ2). The function X ′Σ−1(µ1−µ2) is called

Fisher’s discriminant function, and
√

(µ1 − µ2)′Σ−1(µ1 − µ2) is called Mahalanobis’ distance
between µ1 and µ2.
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13.1.1 An optimization problem

Before proceeding further we need the following result. Consider optimization problem

max
d6=0

d′Ad

d′Bd
, (13.2)

where A is an m ×m symmetric positive semidefinite matrix and B is an m ×m symmetric
positive definite matrix. LetB1/2 be symmetric positive definite matrix such thatB = B1/2B1/2

(see section 1 for discussion of such functions of symmetric matrices). By change of variables
h = B1/2d we can write problem (13.2) as

max
h 6=0

h′(B−1/2AB−1/2)h

‖h‖2
,

where ‖ · ‖ denotes the Euclidean norm. This in turn can be written as

max
‖h‖=1

h′(B−1/2AB−1/2)h. (13.3)

Such problems are discussed in section 15.
Matrix B−1/2AB−1/2 is symmetric positive semidefinite. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the

eigenvalues and e1, ..., em be the corresponding orthonormal eigenvectors of matrixB−1/2AB−1/2,
i.e., ‖ei‖ = 1 and e′iej = 0 for i 6= j. Note that B−1/2ei are eigenvectors of matrix B−1A corre-
sponding to the same eigenvalues λi. This follows from B−1/2AB−1/2ei = λiei by multiplying
both sides of this equation byB−1/2. The optimal solution h̄ of problem (13.3) is the eigenvector
h̄ = e1. It follows that solution d1 = B−1/2e1 of problem (13.2) is given by the eigenvector of
B−1A corresponding to its largest eigenvalue. Note that the optimal solution of problem (13.2)
is defined up to a scale change, i.e., changing d to td does not change value of the objective
function in (13.2) for any nonzero number t.

In particular, suppose that matrix A has rank one, and hence can be written as A = aa′

where a 6= 0 is an m × 1 vector. Then d1 = B−1a is an optimal solution of problem (13.2).
Indeed, in that case matrix B−1A has only one nonzero eigenvalue, the largest one. Moreover,
for λ = a′B−1a we have

B−1Ad1 = B−1a(a′B−1a) = λB−1a = λd1. (13.4)

It also follows that in that case the optimal value of problem (13.2) is equal to a′B−1a.
Next consider the following problem

max
d6=0

d′Ad

d′Bd
subject to d′Bd1 = 0. (13.5)

Again by change of variables h = B1/2d we obtain the problem

max
‖h‖=1

h′(B−1/2AB−1/2)h, subject to h′e1 = 0.

Optimal solution of this problem is the eigenvector e2 of B−1/2AB−1/2, and hence the optimal
solution of problem (13.5) is the eigenvector d2 = B−1/2e2 of B−1A corresponding to its second
largest eigenvalue. Note that d′2Bd1 = e2e1 = 0.
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13.2 Fisher discriminant analysis

Suppose that distribution of population πi has mean µi and covariance matrix Σi. Consider the
following problem

max
d6=0

{
g(d) :=

(d′µ1 − d′µ2)2

d′Σ1d + d′Σ2d

}
. (13.6)

Note that d′µi is the expected value and d′Σid is the variance of d′X for population πi.
We can write function g(d) as

g(d) =
d′(µ1 − µ2)(µ1 − µ2)′d

d′(Σ1 + Σ2)d
.

Hence the optimal solution d̄ of problem (13.6) is (see equation (13.4))

d̄ = (Σ1 + Σ2)−1(µ1 − µ2). (13.7)

In particular if Σ1 = Σ2 = Σ, then d̄ = Σ−1(µ1 − µ2). Recall that the optimal solution of
problem (13.6) is defined up to a scale change.

13.3 Several populations

Suppose that there are r populations π1, ..., πr with respective means µ1, ...,µr and covariance
matrices Σ1, ...,Σr. Let qi be the probability that the measurements vector X comes from
population πi, i = 1, ..., r (we assume that qi > 0, i = 1, ..., r). We have that

µ = E[X] = q1µ1 + ...+ qrµr

and
E[XX ′] = q1(Σ1 + µ1µ

′
1)...+ qr(Σr + µrµ

′
r),

and hence

Cov(X) = E[XX ′]− µµ′ =
r∑
i=1

qiΣi +
r∑
i=1

qi(µi − µ)(µi − µ)′ = Ω +M ,

where

Ω :=
r∑
i=1

qiΣi and M :=
r∑
i=1

qi(µi − µ)(µi − µ)′. (13.8)

Consider the following optimization problem

max
d∈Rm

{
g(d) :=

d′Md

d′Ωd

}
. (13.9)

Note that matrices Σi are positive definite and hence matrix Ω is positive definite, and matrix
M is positive semidefinite. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of Ω−1M . Then the
optimal solution d1 of problem (13.9) is the eigenvector of Ω−1M corresponding to its largest
eigenvalue λ1 (see section 13.1.1). Next maximize g(d) subject to d′Ωd1 = 0. The solution of
this problem is given by eigenvector d2 of Ω−1M corresponding to the second largest eigenvalue
λ2. By continuing this process we obtain discriminant functions d′iX, i = 1, ..., r− 1. Note that
rank(M) ≤ r − 1 since ∑r

i=1 qi(µi − µ) =
∑r

i=1 qiµi − µ = 0.

Hence λr = ... = λm = 0. For r = 2 we have µ1 − µ = q2(µ1 − µ2), µ2 − µ = q1(µ1 − µ2) and
hence M = q1q2(µ1 − µ2)(µ1 − µ2)′. In that case the above approach is the same as Fisher’s
discriminant analysis.
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13.3.1 Mahalanobis distance

Mahalanobis distance between two vectors x,y ∈ Rm, with respect to covariance matrix Σ, is
defined as

d(x,y) =

√
(x− y)′Σ−1(x− y)

Assuming that covariance matrices Σ1 = .. = Σr = Σ are equal to each other, classify X in πi
if d(X,µi) < d(X,µj) for all j 6= i.

Voronoi diagram. The positive definite matrix Σ−1 defines the corresponding norm
‖x‖Σ−1 :=

√
x′Σ−1x. If Σ = Im this is the Euclidean norm.

Partition of Rm into regions

Ri = {x : ‖x− µi‖Σ−1 ≤ ‖x− µj‖Σ−1 , j 6= i}, i = 1, ..., r,

is called Voronoi diagram (with respect to the norm ‖ · ‖Σ−1). Note that each set Ri is
polyhedral given by intersection of half spaces{

x : x′Σ−1(µj − µi) ≤ 1
2

(
µ′jΣ

−1µj − µ′iΣ−1µi
)}
, j 6= i.

Mahalanobis distance classification: classify X in πi if X ∈ Ri. For r = 2 this is the same
classification as in (13.1) with q1 = q2 and c1 = c2.

13.4 Bayes and Logistic Regression classifiers

Suppose that we have two populations π1 and π2. We consider (Y,X) with Y = 1 if X ∼ π1

and Y = −1 if X ∼ π2. By Bayes formula we have that

Prob(Y = 1|X = x) =
p1(x)q1

p1(x)q1 + p2(x)q2
,

where q1 = Prob(Y = 1) and q2 = Prob(Y = −1). We classify X in π1 if Prob(Y = 1|X = x) >
Prob(Y = −1|X = x), which is equivalent to p1(x)q1 > p2(x)q2.

Logistic regression approach. The ratio odd(x) = Prob(Y=1|X=x)
Prob(Y=−1|X=x) is called odds ratio. Lo-

gistic regression model:
log odd(x) = β0 + β′x. (13.10)

We classify X in π1 if odd(x) > 1. This is equivalent to β0 + β′x > 0.
Note that

Prob(Y = 1|X = x)

Prob(Y = −1|X = x)
=
p1(x)q1

p2(x)q2
.

In case of normal distributions with the same covariance matrix Σ we have that (see section
13.1)

p1(x)

p2(x)
= exp

{
x′Σ−1(µ1 − µ2) + const

}
.

In that case (assuming q1 = q2) equation (13.10) holds with β = Σ−1(µ1 − µ2).
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14 Support Vector Machines

Suppose that we have two populations π1 and π2 . Suppose further that we have training data
(x1, y1), ..., (xN , yN ), where xi ∈ Rp and yi = 1 if xi ∼ π1 and yi = −1 if xi ∼ π2. We want to
separate these populations by a hyperplane β0 + β′x = 0. That is, we classify an observation
x according to the sign of β0 + β′x, i.e., we classify x ∼ π1 if β0 + β′x > 0, and x ∼ π2 if
β0 + β′x < 0. Then a point (yi,xi) is misclassified iff yi(β0 + β′xi) < 0.

The data sets are separable iff there exist β0 and β such that yi(β0 + β′xi) > 0 for all
i = 1, ..., n. The largest margin of separation can be obtained by solving the following problem5

max
β0,β, ‖β‖=1

c (14.1)

subject to yi(β0 + β′xi) ≥ c, i = 1, ..., N. (14.2)

The data is separable iff the optimal value of the above problem is positive. By making change
of variables c = 1/‖β‖, we can write the above problem as

min
β0,β
‖β‖2 (14.3)

subject to yi(β0 + β′xi) ≥ 1, i = 1, ..., N. (14.4)

Constraints (14.4) define a nonempty feasible set iff the data is separable. Problem (14.3) -
(14.4) is a convex quadratic programming problem, and can be solved efficiently.

If the data sets (classes) overlap we can proceed in a similar way allowing some points to
be on the wrong side of the margin. By introducing slack variables ξ1, ..., ξN we can modify the
constraints yi(β0 + β′xi) ≥ c as

yi(β0 + β′xi) ≥ c− ξi, i = 1, ..., N, (14.5)

or
yi(β0 + β′xi) ≥ c(1− ξi), i = 1, ..., N, (14.6)

where ξi ≥ 0, i = 1, ..., N , and
∑N

i=1 ξi ≤ const. Similar to (14.3)–(14.4), formulation (14.6)
leads to the following optimization problem

min
β0,β,ξ

‖β‖2 (14.7)

subject to yi(β0 + β′xi) ≥ 1− ξi, i = 1, ..., N, (14.8)

ξi ≥ 0, i = 1, ..., N, (14.9)∑N
i=1 ξi ≤ C, (14.10)

where C > 0 is a chosen constant. The above problem (14.7) - (14.10) is a convex quadratic
programming problem.

Recall that a point (yi,xi) is misclassified iff yi(β0 + β′xi) < 0. Therefore if (β0,β, ξ) is a
feasible point of the problem (14.7) - (14.10) and a point xi is misclassified, then
0 > yi(β0 + β′xi) ≥ 1 − ξi, and hence ξi > 1. It follows that if C is smaller than the min-
imal number of possible misclassifications, then problem (14.7) - (14.10) does not have a feasible
solution. On the other hand, for given β0 and β consider the corresponding set of misclassified
points. If C is equal to the number of misclassifications, then we can take ξi = 1 for every mis-
classified point and ξi = 0 for every classified point. This will give a feasible point of problem
(14.7) - (14.10).

5The norm ‖ · ‖ here is the Euclidean norm.
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We can look at the classification problem from the following point of view. Suppose that we
want to find the hyperplane such that the number of misclassified points is minimal. That is,
we would like to solve the following problem

min
β0,β

N∑
i=1

δ
(
− yi(β0 + β′xi)

)
, (14.11)

where δ(t) = 1 if t > 0, and δ(t) = 0 if t ≤ 0. That is, for given β0 and β the sum∑N
i=1 δ

(
− yi(β0 + β′xi)

)
is equal to the number of misclassified points.

Problem (14.11) is a difficult combinatorial problem. Note that δ(t) ≤ [1 + t]+, where
[a]+ = max{0, a}. Therefore we can approximate problem (14.11) by the following convex
problem

min
β0,β

N∑
i=1

[1− yi(β0 + β′xi)]+ + c‖β‖2. (14.12)

Equivalently we can formulate problem (14.12) as

min
β0,β,ξ

1
2‖β‖2 + γ

∑N
i=1 ξi (14.13)

s.t. yi(β0 + β′xi) ≥ 1− ξi, i = 1, ..., N, (14.14)

ξi ≥ 0, i = 1, ..., N, (14.15)

where γ = c−1.
The Lagrangian of the above problem is

L(β0,β, ξ,λ,µ) = 1
2‖β‖

2 + γ
N∑
i=1

ξi −
N∑
i=1

λi[yi(β0 + β′xi)− (1− ξi)]−
N∑
i=1

µiξi.

The Lagrangian dual of problem (14.13)– (14.15) is the problem

max
λ≥0,µ≥0

min
β0,β,ξ≥0

L(β0,β, ξ,λ,µ). (14.16)

The corresponding Lagrangian-Wolfe dual is obtained by employing optimality conditions for
the problem of minimization of L(β0,β, ξ,λ,µ) in (14.16). That is, by setting derivatives of the
Lagrangian to zero, with respect to β, β0, ξ, we have

β =

N∑
i=1

λiyixi (14.17)

0 =
N∑
i=1

λiyi (14.18)

λi = γ − µi, i = 1, ..., N, (14.19)

By substituting these equations into the Lagrangian we obtain the Lagrangian-Wolfe dual:

max
λ

N∑
i=1

λi − 1
2

N∑
i=1

N∑
j=1

λiλjyiyjx
′
ixj (14.20)

s.t. 0 ≤ λi ≤ γ, i = 1, ..., N, (14.21)
N∑
i=1

λiyi = 0. (14.22)
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We also have the following complementarity conditions for problem (14.13)– (14.15):

λi[yi(β0 + β′xi)− (1− ξi)] = 0, i = 1, ..., N, (14.23)

µiξi = 0, i = 1, ..., N. (14.24)

Given solution λ̄ of problem (14.20)–(14.22) the optimal β can be computed using equation
(14.17), that is

β̄ =
N∑
i=1

λ̄iyixi. (14.25)

The complementarity conditions (14.24) mean that ξi = 0 if µi > 0, and similarly for the
complementarity conditions (14.23) . By (14.19) we have that µi > 0 if λi < γ. Therefore by
using equation (14.23), for 0 < λ̄i < γ the optimal β0 can be computed by solving yif(xi) = 1,
where f(x) = β0 + β′x.

Suppose now that we want to make classification by using feature vectors h(xi), i = 1, ..., N ,
where h(·) = (h1(·), ..., hq(·))′ : Rp → Rq. We can approach this by solving the corresponding
dual problem with replacing xi with h(xi), i = 1, ..., N . That is the objective function in (14.20)
is replaced by

N∑
i=1

λi − 1
2

N∑
i=1

N∑
j=1

λiλjyiyjh(xi)
′h(xj). (14.26)

Consequently, by using β =
∑N

i=1 λiyih(xi) (see (14.25)), the classification is performed accord-
ing to the sign of

f(x) = β0 + β′h(x) = β0 +
N∑
i=1

λiyih(x)′h(x). (14.27)

Both expressions (14.26) and (14.27) are defined by the so-called kernel function

K(x, z) = h(x)′h(z) =

q∑
s=1

hs(x)hs(z). (14.28)

In terms of the kernel function the objective function (14.26) can be written as

N∑
i=1

λi − 1
2

N∑
i=1

N∑
j=1

λiλjyiyjK(xi,xj), (14.29)

and the classifier (14.27) as

f(x) = β0 +
N∑
i=1

λiyiK(x,xi). (14.30)

For example

K(x, z) = (1 + x′z)2 =

(
1 +

p∑
i=1

xizi

)2

defines a quadratic separation.
Kernel function should be symmetric, i.e., K(x, z) = K(z,x), and positive definite, i.e.,

for any x1, ...,xm the matrix A = [aij ] with components aij = K(xi,xj) should be positive
semidefinite, or in other words

∑m
i,j=1 λiλjK(xi,xj) should be nonnegative for any x1, ...,xm

and λ1, ..., λm. Popular examples of kernels:
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• Polynomial K(x, z) = (1 + x′z)d.

• Radial basis K(x, z) = exp(−γ‖x− z‖2), γ > 0.

• Hyperbolic tangent K(x, z) = tanh(c1 + c2x
′z), c1 < 0, c2 > 0, where tanhx = sinhx

coshx =
ex−e−x
ex+e−x , sinhx = −i sin(ix) = ex−e−x

2 , cosh(x) = cos(ix) = ex+e−x

2 .

15 Principal Components Analysis

Consider an m × 1 random vector X with µ = E[X] and Σ = Cov[X]. Let λ1 ≥ · · · ≥ λm be
the eigenvalues and e1, ..., em be corresponding eigenvectors of Σ, i.e., Σei = λiei, i = 1, ...,m.
We assume6 that the eigenvectors are orthonormal, i.e., ‖ei‖ = 1, i = 1, ...,m, and e′iej = 0 for
i 6= j. Recall that then (spectral decomposition)

Σ = EΛE′ = λ1e1e
′
1 + ...+ λmeme

′
m, (15.1)

where Λ = diag(λ1, ..., λm) is diagonal matrix and E = [e1, ..., em] is orthogonal matrix.
Suppose that we want to find a linear combinations w′X = w1X1 + ...+wmXm with largest

variance. That is we want to solve the problem

max
‖w‖=1

Var(w′X). (15.2)

Note that w′x = ‖w‖‖x‖ cos θ, where θ is the angle between vectors w and x. If ‖w‖ = 1, then
w′x = ‖x‖ cos θ is the orthogonal projection of vector x onto the straight line in the direction
of vector w. Therefore problem (15.2) can be viewed as finding a direction such that projection
of X onto that direction has the largest variance.

We have that Var(w′X) = w′Σw and by (15.1)

w′Σw = w′EΛE′w = v′Λv = λ1v
2
1 + ...+ λmv

2
m, (15.3)

where v = E′w. Moreover, since matrix E is orthogonal,

v2
1 + ...+ v2

m = v′v = w′EE′w = w′w = 1.

That is, v′Λv is a convex combination of eigenvalues λi. Thus v′Λv is maximized when v =
(1, 0, ..., 0)′. Since w = Ev, it follows that solution of problem (15.2) is given by the eigenvector
e1 corresponding to the largest eigenvalue of matrix Σ. Note that

Var(e′1X) = e′1Σe1 = λ1e
′
1e1 = λ1.

Given the first principal component Y1 = e′1X, suppose that we want to find Y2 = w′X,
with ‖w‖ = 1, such that Cov(Y1, Y2) = 0 and Y2 has the largest possible variance. Since

Cov(Y1, Y2) = w′Σe1 = λ1w
′e1,

this means that we want to solve the problem

max
‖w‖=1

w′Σw subject to w′e1 = 0. (15.4)

6The norm in this section is the Euclidean norm.
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Again we need to find v which maximizes the right hand side of (15.3) and such that the sum of
its squared components is one, and is orthogonal to vector (1, 0, ..., 0)′, i.e., the first component
of v is zero. This is vector (0, 1, 0, ..., 0)′, and hence solution of problem (15.4) is e2.

And so on, variables Yi = e′iX, i = 1, ...,m, are called principal components of the data
vector X. Note that Var(Yi) = λi, i = 1, ...,m, Cov(Yi, Yj) = 0 for i 6= j and

m∑
i=1

Var(Yi) =
m∑
i=1

Var(Xi) =
m∑
i=1

λi = tr(Σ).

Note also that vector Y of principal components can be written as Y = E′X. Multiplying both
sides of this equation by E, and since matrix E is orthogonal, we obtain

X = EY = Y1e1 + ...+ Ymem. (15.5)

That is, X can be recovered from Y if vectors e1, ..., em are known. This can be used for
approximation of X by removing from the right hand side of (15.5) terms corresponding to
small eigenvalues λi.

Note that principal components analysis is not scale invariant. That is, suppose we rescale
components of X say by changing units of measurements. So we change X to DX, where D
is a diagonal matrix with positive diagonal elements representing change of scale. Then the
covariance matrix Σ is changed to DΣD. The eigenvalues and eigenvectors of matrix DΣD
do not have a simple relation to the respective eigenvalues and eigenvectors of matrix Σ.

The true (population) covariance matrix Σ is unknown. It is estimated by the sample
covariance matrix

S = (N − 1)−1
N∑
i=1

(Xi − X̄)(Xi − X̄)′. (15.6)

Therefore the PCA usually performed on the sample covariance matrix S, or because of the lack
of scale invariance, on the sample correlation7 matrix. Let `1 ≥ · · · ≥ `m be the eigenvalues
and q1, ..., qm be corresponding orthonormal eigenvectors of S, considered as estimates of the
respective true eigenvalues and eigenvectors. What are statistical properties of these estimates?
In order to apply Delta Theorem we need to compute derivatives of eigenvalues and eigenvectors
considered as functions of symmetric matrices. We are going to discus this next.

15.1 Derivatives of eigenvalues and eigenvectors

Consider the linear space of symmetric m ×m matrices, denoted Sm×m. Consider A ∈ Sm×m
and its eigenvalues λ1 ≥ ... ≥ λm and the corresponding orthonormal eigenvectors e1, ..., em.
Suppose that eigenvalue λi has multiplicity one, i.e., λi is different from the previous eigenvalue
λi−1 and the next eigenvalue λi+1. Then λi(·), considered as a function λi : Sm×m → R, is
continuous at A. Let us make small perturbations of elements of matrix A by adding the
differential dA ∈ Sm×m. Then the eigenvalue equations for perturbed matrix are

(A+ dA)(ei + dei) = (λi + dλi)(ei + dei), (15.7)

where dλi and dei are the corresponding small changes in the eigenvalue and eigenvectors.
Moreover we have that

(A+ dA)(ei + dei) = Aei + (dA)ei +A(dei) + (dA)dei. (15.8)

7The sample correlation matrix is obtained by scaling matrix DSD such that its diagonal elements are equal
one.
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By disregarding the high order terms (dλi)(dei) and (dA)(dei) in (15.7) and (15.8), and since
Aei = λiei, we can write

(dA)ei +A(dei) = (dλi)ei + λi(dei). (15.9)

Furthermore up to high order terms

(ei + dei)
′(ej + dej) = (dei)

′ej + e′i(dej) + e′iej . (15.10)

It follows that for i = j, since (ei + dei)
′(ei + dei) = e′iei = 1,

e′i(dei) = 0, (15.11)

and for i 6= j, since e′iej = 0 and (ei + dei)
′(ej + dej) = 0,

(dei)
′ej + e′i(dej) = 0. (15.12)

Consequently by multiplying both sides of (15.9) by e′i and noting that e′iei = 1, e′i(dei) = 0
and e′iA(dei) = λie

′
i(dei) = 0, we obtain

dλi = e′i(dA)ei. (15.13)

It is also possible to write (15.13) as

dλi = tr(eie
′
i(dA)). (15.14)

Equation (15.13) (equation (15.14)) gives an expression for the linear approximation of the
eigenvalue λi for small perturbations dA of matrix A, i.e.,

λi(A+ dA) = λi(A) + e′i(dA)ei + o(‖dA‖). (15.15)

The assumption that the eigenvalue is simple is essential in the above derivations.
Now let us compute dei. Note that since it is assumed that the eigenvalue λi is simple and

‖ei‖ = 1, the eigenvector ei of A is defined uniquely up to sign change from ei to −ei. Since
eigenvectors e1, ..., em are orthonormal, they form a basis and hence we can write dei as linear
combination dei = c1e1 + ...+ cmem with cj = e′jdei, j = 1, ...,m. For i 6= j we have by (15.9)
and since e′jei = 0 that

e′j(dA)ei + e′jA(dei) = λie
′
j(dei), (15.16)

and since e′jA(dei) = λje
′
j(dei) it follows that

e′j(dA)ei = (λi − λj)e′j(dei). (15.17)

This implies that
cj = (λi − λj)−1e′j(dA)ei, j 6= i. (15.18)

For j = i we have ci = e′i(dei) = 0. We obtain the following formula for the differential of ei:

dei =
m∑
j=1
j 6=i

[
e′j(dA)ei

λi − λj

]
ej . (15.19)

That is, for small perturbations dA of matrix A,

ei(A+ dA) =

m∑
j=1
j 6=i

[
e′j(dA)ei

λi − λj

]
ej + o(‖dA‖). (15.20)
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15.2 Elements of matrix calculus

Kronecker product of matrices A = [aij ] and B = [bij ], of respective orders p × q and r × s, is
the pr × qs matrix

A⊗B =


a11B a12B · · · a1qB
a21B a22B · · · a2qB
· · · · · · · · · · · ·
ap1B ap2B · · · apqB

 .
Vec-operator of p× q matrix A is pq × 1 vector

vec(A) =



a1

a2

·
·
·
aq

 ,

where a1, ...,aq are columns of A.
Note the following matrix identities

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (15.21)

and
vec(BXC) = (C ′ ⊗B)vec(X), (15.22)

where A,B,C,D,X are matrices of appropriate order. Also for matrices A and B of the same
order p× q, and vectors a = vec(A) and b = vec(B),

tr(A′B) =
∑
i,j

aijbij = a′b. (15.23)

LetX1, ...,XN be an iid sample of realizations of random vectorX = (X1, ..., Xm)′. Assume
that the distribution of X has finite fourth order moments. Let s = vec(S) and σ0 = vec(Σ0),
where Σ0 = [σij ] is the population covariance matrix. Then by the CLT, N1/2(s−σ0) converges
in distribution to normal with zero mean vector and a covariance matrix Γ of orderm2×m2. Note
that since matrices S and Σ0 are symmetric, vectors s and σ0 have not more than m(m+ 1)/2
different elements, therefore rank(Γ) ≤ m(m+ 1)/2. The typical element of matrix Γ is

[Γ]ij,k` = E
{

[(Xi − µi)(Xj − µj)− σij ][(Xk − µk)(X` − µ`)− σk`]
}

= E
[
(Xi − µi)(Xj − µj)(Xk − µk)(X` − µ`)

]
− σijσk`.

In particular if X has normal distribution, then

E
[
(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl)

]
= σijσkl + σikσjl + σilσjk,

and hence
[Γ]ij,k` = σikσj` + σi`σjk. (15.24)

In a matrix form equations (15.24) can be written as

Γ = 2Mm(Σ0 ⊗Σ0), (15.25)
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where Mm is the m2 ×m2 matrix given by

Mm =
1

2

Im2 +

m∑
i,j=1

(H ij ⊗H ′ij)

 ,
with H ij being m ×m matrix with hij = 1 and all other elements zero. The matrix Mm has
the following properties: (i) rank(Mm) = m(m+ 1)/2, (ii) M2

m = Mm, (iii) for any symmetric
matrix Σ,

Mm(Σ⊗Σ) = (Σ⊗Σ)Mm and Mmvec(Σ) = vec(Σ).

It follows that
Γ = 2Mm(Σ0 ⊗Σ0)Mm. (15.26)

15.3 Asymptotics of PCA

Let X1, ...,XN be an iid sample from Nm(µ,Σ) and S be the corresponding sample covariance
matrix. Let λ1 ≥ · · · ≥ λm be the eigenvalues and e1, ..., em be a corresponding set of orthonor-
mal eigenvectors of Σ, and `1 ≥ · · · ≥ `m be the eigenvalues and q1, ..., qm be a corresponding
set of orthonormal eigenvectors of S.

Suppose that λi has multiplicity one. Let us show that N1/2(`i − λi) and N1/2(qi − ei)
are asymptotically normal (with mean zero) and asymptotically independent of each other, and
that the asymptotic variance of N1/2(`i − λi) is 2λ2

i and the asymptotic covariance matrix of
N1/2(qi − ei) is

m∑
j=1, j 6=i

λiλj
(λi − λj)2

eje
′
j . (15.27)

By the Delta Theorem and (15.15) we have that

N1/2(`i − λi) = e′i[N
1/2(S −Σ)]ei + op(1),

and hence N1/2(`i − λi) converges in distribution to N (0, σ2), where σ2 can be calculated as
follows. We have

e′i[N
1/2(S −Σ)]ei = tr

[
N1/2(S −Σ)eie

′
i

]
= [vec(eie

′
i)]
′[N1/2(s− σ)]

and hence

σ2 = [vec(eie
′
i)]
′Γ[vec(eie

′
i)] = 2[vec(eie

′
i)]
′Mm(Σ⊗Σ)Mm[vec(eie

′
i)].

Moreover, Mm[vec(eie
′
i)] = vec(eie

′
i) and

[vec(eie
′
i)]
′(Σ⊗Σ)[vec(eie

′
i)] = tr[(eie

′
i)Σ(eie

′
i)Σ] = (e′iΣei)(e

′
iΣei) = λ2

i .

Similarly, by (15.20)

N1/2(qi − ei) =
∑
j 6=i

ajej + op(1),

where

aj =
e′j [N

1/2(S −Σ)]ei

λi − λj
= (λi − λj)−1[vec(eie

′
j)]
′[N1/2(s− σ)].
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The asymptotic covariance between aj and ak (for j 6= i and k 6= i) is

[vec(eie
′
j)]
′Γ[vec(eie

′
k)]

(λi − λj)2
=

2tr[(eie
′
j)MmΣ(eie

′
k)MmΣ]

(λi − λj)2
. (15.28)

Also Mm(eie
′
j) = 1

2 [(eie
′
j) + (eje

′
i)] and Mm(eie

′
k) = 1

2 [(eie
′
k) + (eke

′
i)]. It follows that the

right hand side of (15.28) is equal to

tr[((eie
′
j) + (eje

′
i))Σ((eie

′
k) + (eke

′
i))Σ]

2(λi − λj)2
. (15.29)

Moreover, we have that e′jΣek = λje
′
jek equals 0 if j 6= k, and λj if j = k. Therefore the

expression in (15.29) equals 0 if j 6= k, and λiλj/(λi − λj)
2 if j = k. We obtain that the

asymptotic covariance matrix of ajej is
λiλj

(λi−λj)2eje
′
j , and ajej is asymptotically uncorrelated

with akek for j 6= k. Formula (15.27) follows.
Finally, the asymptotic covariance between n1/2(`i − λi) and aj , j 6= i, is proportional to

[vec(eie
′
i)]Γ[vec(eie

′
j)] = tr[(eie

′
i)Σ(eie

′
j + eje

′
i)Σ] = 0,

and hence N1/2(`i − λi) and N1/2(qi − ei) are asymptotically independent.

15.4 Singular value decomposition

Let X be an m×n matrix of rank r (note that r ≤ min{m,n}). Its singular value decomposition
is

X = V DW ′ = σ1v1w
′
1 + ...+ σrvrw

′
r,

where V = [v1, ...,vr] and W = [w1, ...,wr] are matrices of order m× r and n× r, respectively,
such that V ′V = Ir and W ′W = Ir, and D = diag(σ1, ..., σr) with σ1 ≥ · · · ≥ σr > 0. Note
that

XX ′ = V DW ′WDV = V D2V ′,

i.e., V D2V ′ is the spectral decomposition of the (symmetric positive semidefinite) m×m matrix
XX ′. It follows that σ2

i , i = 1, ..., r, are the nonzero eigenvalues of XX ′. Similarly WD2W ′

is the spectral decomposition of the n × n matrix X ′X with the same nonzero eigenvalues σ2
i ,

i = 1, ..., r.
For s < r consider the (truncated) matrix Xs = VsDsW

′
s , where Vs = [v1, ...,vs], Ws =

[w1, ...,ws] and Ds = diag(σ1, ..., σs), i.e.,

Xs = σ1v1w
′
1 + ...+ σsvsw

′
s.

The matrix Xs is the nearest matrix of rank s to the original matrix X, in the sense of the
difference between the two having the smallest possible Frobenius norm (EckartYoung theorem).
That is, solution of the minimization problem

min
Z∈Rm×n

‖X −Z‖F subject to rank(Z) ≤ s

is Z̄ = Xs. Frobenius norm of a matrix A is

‖A‖F =
√

tr(AA′) =
√

tr(A′A) =
√∑

i,j a
2
ij .
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16 Factor analysis model

Consider an m× 1 random vector X (of measurements) with µ = E[X] and Cov(X) = Σ. The
factor analysis model assumes that

X = µ+ Λf + ε, (16.1)

where Λ is an m × k matrix (of factor loadings), f is a k × 1 random vector (of factors) and
ε is an m × 1 random vector (errors). It is assumed that: (i) E[f ] = 0 and E[ε] = 0, (ii) the
errors are uncorrelated, i.e., Cov(ε) is diagonal, (iii) the factors and errors are uncorrelated, i.e.,
E[fε′] = 0.

It follows then that

Σ = E[(Λf + ε)(Λf + ε)′] = ΛΦΛ′ + Ψ, (16.2)

where Φ = Cov(f) and Ψ = Cov(ε). Since it is assumed that the errors are uncorrelated, matrix
Ψ is diagonal. Matrices Φ and Ψ are covariance matrices and hence are positive semidefinite.
Since matrix Ψ is diagonal, it is positive semidefinite iff all its diagonal elements are nonnegative.
Often it is assumed that Φ = Ik, i.e., the factors are standardized. Then the model becomes

Σ = ΛΛ′ + Ψ. (16.3)

Note that rank(Σ−Ψ) = rank(Λ) ≤ k. Note also that if T is a k × k orthogonal matrix, then
(ΛT )(ΛT )′ = ΛTT ′Λ′ = ΛΛ′. Therefore the right hand side of (16.3) is defined up to change
of Λ to ΛT . This can be viewed as rotation of the row vectors of matrix Λ by orthogonal matrix
T .

There is a certain similarity between Factor Analysis (FA) and PCA. Both try to explain
covariances between components of the response vector X by a smaller number of factors. But
there are also essential differences, FA is a model and, unlike PCA, is scale invariant. That is,
if D is a diagonal matrix with positive diagonal elements, then rescaling X to DX results in
rescaling Σ to DΣD, Λ to DΛ and Ψ to D2Ψ. It is possible to develop a statistical inference
of the FA model (below).

Given data (sample) X1, ...,XN of observations (realizations) of X, FA is performed on the

sample covariance matrix S. That is, S is approximated by matrix of the form Σ̂ = Λ̂Λ̂
′
+ Ψ̂,

where Λ̂ is an m × k matrix and Ψ̂ is a diagonal matrix with nonnegative diagonal elements.
If it is assumed that the sample has normal distribution, i.e., Xi ∼ Nm(µ,Σ), it is possible to
proceed to the corresponding statistical inference. Let us show that the ML estimators of µ and
Σ are µ̂ = X̄ and Σ̂ = N−1

∑n
i=1(Xi − X̄)′(Xi − X̄). Note that Σ̂ = N−1

N S.
The likelihood function is

L(µ,Σ) =

N∏
i=1

1

(2π)m/2|Σ|1/2
exp

{
− (Xi − µ)′Σ−1(Xi − µ)/2

}
.

Up to a constant independent of µ and Σ we can write logarithm of the likelihood function as
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logL(µ,Σ) = − 1
2N log |Σ| − 1

2

N∑
i=1

(Xi − µ)′Σ−1(Xi − µ)

= − 1
2N log |Σ| − 1

2

N∑
i=1

tr
[
Σ−1(Xi − µ)(Xi − µ)′

]
= − 1

2N log |Σ| − 1
2trΣ−1

[
N∑
i=1

(Xi − µ)(Xi − µ)′

]

= − 1
2N log |Σ| − 1

2tr

{
Σ−1

[
N∑
i=1

(Xi − X̄)(Xi − X̄)′ +N(X̄ − µ)(X̄ − µ)′

]}
= − 1

2N log |Σ| − 1
2tr
[
Σ−1A

]
− 1

2N(X̄ − µ)′Σ−1(X̄ − µ).

where

A :=

N∑
i=1

(Xi − X̄)(Xi − X̄)′ = (N − 1)S.

That is

logL(µ,Σ) = − 1
2N log |Σ| − 1

2(N − 1)tr
[
Σ−1S

]
− 1

2N(X̄ − µ)′Σ−1(X̄ − µ). (16.4)

Since Σ−1 is positive definite, we have that (X̄ − µ)′Σ−1(X̄ − µ) ≥ 0 and its minimum of
zero is attained for µ = X̄. It follows that X̄ is the ML estimator of µ. Now in order to find the
ML estimator of Σ we need to minimize N log |Σ|+tr

[
Σ−1A

]
over positive definite matrices Σ.

Let λ1, ..., λm be eigenvalues of Σ−1A (note that since matrices Σ and A are positive definite,
matrix Σ−1A has positive real valued eigenvalues, see section 1). Then

N log |Σ|+ tr
[
Σ−1A

]
= N log |ΣA−1|+ tr

[
Σ−1A

]
+N log |A| =

m∑
i=1

(λi−N log λi) +N log |A|.

Note that function f(λ) = λ − N log λ is convex and has unique minimizer λ = N . It follows

that the minimum is attained when all eigenvalues λi = N , that is Σ̂
−1
A = NIm. It follows

that Σ̂ = N−1A = N−1
N S. �

Assuming that the sample is from normally distributed population, by (16.4) and since the
MLE of µ is X̄, the MLE of parameters Λ and Ψ of the FA model are obtained by solving the
problem

min
Λ,Ψ≥0

log
∣∣ΛΛ′ + Ψ

∣∣+
N − 1

N
tr
[
(ΛΛ′ + Ψ)−1S

]
,

where matrix Ψ is diagonal (by writing Ψ ≥ 0 we mean that diagonal elements of Ψ are
nonnegative).

An important question in FA is how many factors should be in the model. The LRT statistic
for testing FA model (16.3), with k factors, is

2 log λ = N min
Λ,Ψ≥0

{
log
∣∣ΛΛ′ + Ψ

∣∣− log |Σ̂|+ tr
[
(ΛΛ′ + Ψ)−1Σ̂

]
−m

}
where Σ̂ = N−1

N S is the unrestricted MLE of Σ. Under H0 of the FA model with k factors, the
statistic 2 log λ asymptotically has χ2

ν distribution with ν = m(m+ 1)/2−m(k+ 1) +k(k−1)/2
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degrees of freedom. In calculation of the degrees of freedom, m(m + 1)/2 is the number of
nonduplicated elements of the covariance matrix, mk+m is the number of estimated parameters
and the last term k(k−1)/2 is the correction because of the possible rotation of the factor loadings
matrix by k × k orthogonal matrix. Consequently H0 hypothesis of k factors is rejected if the
statistic 2 log λ is larger than critical value of the χ2

ν distribution.
The above statistical inference is based on the assumption that the population has a normal

distribution. In various applications this assumption can be questionable. Also if the sample
size n is large, this procedure tends to reject H0 even if the FA model gives a reasonable approx-
imation of the sample covariance matrix. Various indexes of fit, with questionable justifications,
were suggested in the literature trying to resolve the question of ‘correct’ number of factors.

17 Kernel PCA

Given data (sample)X1, ...,XN , suppose that we want to represent data in terms of vectorsZi =
h(Xi), i = 1, ..., N , where h(·) = (h1(·), ..., hq(·))′ : Rm → Rq is a (nonlinear) mapping. Suppose

for the moment that Z̄ = N−1
∑N

i=1Zi = N−1
∑N

i=1 h(Xi) is 0. Consider the corresponding
estimator of the covariance matrix in the new feature space

C = N−1
N∑
i=1

ZiZ
′
i = N−1

N∑
i=1

h(Xi)h(Xi)
′.

Let λ1 ≥ · · · ≥ λq be eigenvalues and e1, ..., eq be corresponding orthonormal eigenvectors of the
q × q matrix C, i.e., Ces = λses, s = 1, ..., q. We have that

λses = Ces = N−1
N∑
i=1

ZiZ
′
ies,

and hence (for λs 6= 0)

es =
1

λsN

N∑
i=1

αisZi, (17.1)

where αis = Z ′ies, s = 1, ..., q, i = 1, ..., N . It follows by (17.1) that

αis =
1

λsN
Z ′i

( N∑
j=1

αjsZj

)
=

1

λsN

N∑
j=1

αjsZ
′
iZj =

1

λsN

N∑
j=1

αjsh(Xi)
′h(Xj). (17.2)

Consider kernel function (compare with (14.28)) K(x, z) = h(x)′h(z). In terms of the kernel
function equation (17.2) can be written as

N∑
j=1

αjsK(Xi,Xj) = λsNαis. (17.3)

Consider N ×N matrix K with components Kij = K(Xi,Xj), i, j = 1, ..., N . Equation (17.3)
can be written as

Kαs = λsNαs, s = 1, ..., q, (17.4)

where αs = (α1s, ..., αNs)
′. That is, αs are eigenvectors of matrix K. These eigenvectors can

be normalized as follows

1 = e′ses =
1

λ2
sN

2

(
N∑
i=1

αisZ
′
i

) N∑
j=1

αjsZ
′
j

 =
1

λ2
sN

2

N∑
i,j=1

αisαjsZ
′
iZj =

1

λ2
sN

2

N∑
i,j=1

αisαjsK(Xi,Xj).
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That is α′sKαs = λ2
sN

2. Because of (17.4) this implies that α′sαs = λsN .
In order to apply this PCA procedure we need to compute the eigenvectors of matrix K

corresponding to its largest eigenvalues. This will give us vectors αs and numbers λs. For a
data point X ∈ Rm its s-PCA component is e′sh(X). By (17.1) we have

e′sh(X) =
1

λsN

N∑
i=1

αish(Xi)
′h(X) =

1

λsN

N∑
i=1

αisK(Xi,X).

When N−1
∑N

i=1 h(Xi) 6= 0 we can make the following correction to the matrix K:

K̃ij =
[
h(Xi)−N−1

∑N
k=1 h(Xk)

]′[
h(Xj)−N−1

∑N
`=1 h(X`)

]
= Kij −N−1

∑N
k=1Kki −N−1

∑N
k=1Kkj +N−2

∑N
k=1

∑N
`=1Kk`.

18 Correlation analysis

18.1 Partial correlation

Let X,Y and Z be random variables. Partial correlation between X and Y given Z, denoted
Corr(X,Y |Z) or ρXY.Z , is defined as the correlation between residuals of X and Y regressed on
Z. That is, let us consider regression X on Z. Without loss of generality we can assume that
E[X] = E[Y ] = E[Z] = 0. The regression is obtained by solving

min
β

E[(X − βZ)2].

Solution of this problem is β = Cov(X,Z)/Var(Z) = Corr(X,Z). Hence the partial correlation
is

Corr(X,Y |Z) = Corr (X − ρXZZ, Y − ρY ZZ) =
ρXY − ρXZρY Z√
1− ρ2

XZ

√
1− ρ2

Y Z

,

where ρXZ = Corr(X,Z) and ρY Z = Corr(Y,Z).
In similar way partial correlation between random variables X and Y given random variables

Z1, Z2, ..., Zn, is defined. That is, suppose that E[X] = E[Y ] = E[Z1] = ... = E[Zn] = 0. Consider
the problem

min
β

E[(X − β′Z)2].

Solution of this problem is β = Σ−1
Z ΣZX , where ΣZ is the covariance matrix of random vector

Z = (Z1, ..., Zn) and ΣXZ = Cov(X,Z). Hence

Corr(X,Y |Z) = Corr(X −ΣXZΣ−1
Z Z, Y −ΣY ZΣ−1

Z Z).

18.2 Canonical correlation analysis

Consider random vectors X = (X1, ..., Xp)
′ and Y = (Y1, ..., Yq)

′. Let µ1 = E[X] and

µ2 = E[Y ], and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
be the covariance matrix of (X ′,Y ′)′, i.e., Σ11 = Cov(X),

Σ22 = Cov(Y ) and Σ12 = Cov(X,Y ). Consider random variables U = a′X and V = b′Y for
some vectors a ∈ Rp and b ∈ Rq. We want to solve the problem

max
a,b

Corr(U, V ). (18.1)
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Suppose for the moment that Σ11 = Ip and Σ22 = Iq. Then Cov(U, V ) = a′Σ12b and
Var(U) = a′a, Var(V ) = b′b. Hence problem (18.1) becomes

max
a,b

a′Σ12b√
a′a
√
b′b

. (18.2)

Note that for a given vectorw, the maximum ofw′b subject to ‖b‖ = 1 is attained at b̄ = w/‖w‖.
Therefore for given a the maximum in (18.2) is attained at b = Σ21a. Hence with respect to a
problem (18.2) becomes

max
a

{
a′Σ12Σ21a√

a′a
√
a′Σ12Σ21a

=

√
a′Σ12Σ21a

a′a

}
. (18.3)

Optimal solution ā of problem (18.3) is given by the eigenvector of matrix Σ12Σ21 corresponding
to its largest eigenvalue λ1, and the maximum in (18.1) is equal to

√
λ1. Similar the optimal b̄

is given by the eigenvector of matrix Σ21Σ12 corresponding to its largest eigenvalue λ1. Note
that

Σ21Σ12Σ21ā = λ1Σ21ā,

and hence b̄ = Σ21ā.
In general let c = Σ

1/2
11 a and d = Σ

1/2
22 b. Then

Corr(U, V ) =
a′Σ12b√

a′Σ11a
√
b′Σ22b

=
c′Σ

−1/2
11 Σ12Σ

−1/2
22 d

√
c′c
√
d′d

.

Hence the maximum is attained at c̄ given by the eigenvector of Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 corre-

sponding to its largest eigenvalue λ1, and at d̄ given by the eigenvector of Σ
−1/2
22 Σ21Σ

−1
11 Σ21Σ

−1/2
22

corresponding to its largest eigenvalue λ1, and

d̄ = Σ
−1/2
11 Σ12Σ

−1/2
22 c̄.

We have that
Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 c̄ = λ1c̄

and c̄ = Σ
1/2
11 ā. Hence

Σ−1
11 Σ12Σ

−1
22 Σ21ā = λ1ā, (18.4)

and similarly
Σ−1

22 Σ21Σ
−1
11 Σ12b̄ = λ1b̄. (18.5)

Let a1 = ā and b1 = b̄, and U1 = a′1X and V1 = b′1Y . At the second stage we want to
find U2 = a′2X and V2 = b′2Y such that Cov(U2, U1) = 0, Cov(V2, V1) = 0 and Corr(U2, V2) is

maximized. Consider c2 = Σ
1/2
11 a2 and d2 = Σ

1/2
22 b2. Then

Cov(U2, U1) = a′2Σ11a1 = c′2Σ
−1/2
11 Σ11Σ

−1/2
11 c1 = c′2c1.

Hence Cov(U2, U1) = 0 iff c′2c1 = 0. Therefore the second stage problem is

max
c

c′Σ
−1/2
11 Σ12Σ

−1/2
22 d

√
c′c
√
d′d

subject to c′c1 = 0.

The maximum is attained at c̄ given by the eigenvector of Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 corresponding

to its second largest eigenvalue λ2. And so on.
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19 Gaussian Mixture Models

Let yi ∈ {1, ...,K} be one of K possible labels for data point Xi, i = 1, ..., N . Assume that
the pdf of the data f(xi, yi) = f(xi|yi)p(yi), is defined as follows: p(yi = k) = πk, k = 1, ...,K,
and the conditional distributions f(xi|yi = k) ∼ Nm(µk,Σk) are normal. The corresponding
log-likelihood function is

`n(θ) =
∑n

i=1 log
(∑K

k=1 πkφ(Xi;µk,Σk)
)
,

where

φ(x;µ,Σ) =
1

(2π)m/2|Σ|1/2
exp

{
− (x− µ)′Σ−1(x− µ)/2

}
,

and θ = (π,µ1, ...,µK ,Σ1, ...,ΣK) is vector of parameters.

EM (Expectation-Maximization) algorithm
Initialize the means µk, covariances Σk and mixing coefficients πk, k = 1, ...,K.

The Expectation step (E-step) Given current estimates of the parameters π1, ..., πK ,
µ1, ...,µK , Σ1, ...,ΣK , evaluate (by the Bayes rule) the corresponding posterior probabilities
of data point Xi being in cluster k ∈ {1, ...,K}:

wik =
πkφ(Xi;µk,Σk)∑K
j=1 πjφ(x;µj ,Σj)

, i = 1, ..., N.

Note that
∑K

k=1wik = 1 for all i.

The Maximization step (M-step) For k = 1, ...,K, set Nk =
∑N

i=1wik, and update

πnewk = Nk/N , µnewk = N−1
k

∑N
i=1wikXi, and

Σnew
k = N−1

k

N∑
i=1

wik(Xi − µk)(Xi − µk)′.

Note that
∑K

k=1Nk =
∑N

i=1

∑K
k=1wik = N .

20 Von Mises statistical functionals

Let X1, ...,XN be an iid sample of random vectors with probability distribution (probability
measure) Xi ∼ F (·). With the sample is associated the so called empirical probability measure
(distribution) F̂N = N−1

∑N
i=1 δXi , where δx denotes probability measure of mass 1 at the point

x. When X1, ..., XN are random numbers, the empirical cdf F̂N (x) = #(Xi≤x)
N . That is, if the

sample is arranged in the increasing order X(1) ≤ · · · ≤ X(N), then F̂N (x) = 0 for x < X(1),

F̂N (x) = 1/N for X(1) ≤ x < X(2), F̂N (x) = 2/n for X(2) ≤ x < X(3), and so on.
Function θ = T (F ) of the distribution F is called statistical functional. Its sample estimate

is θ̂ = T (F̂N ). Consider the following examples.

• Expectation of a function:

T (F ) = EF [h(X)] =

∫
h(x)dF (x).
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Its sample estimate

T (F̂N ) = EF̂N [h(X)] = N−1
N∑
i=1

h(Xi).

• Variance
T (F ) = Var(X) = EF [X2]− (EF [X])2.

Its sample estimate

T (F̂N ) = N−1
N∑
i=1

X2
i − X̄2 = N−1

N∑
i=1

(Xi − X̄)2.

• Median8 it is defined
T (F ) = F−1(1/2).

Its sample estimate
T (F̂N ) = F̂−1

N (1/2).

• Solution of equation EF [g(X, θ)] = 0. Its sample estimate is obtained as solution of
equation EF̂N [g(X, θ̂)] = 0, which is

∑N
i=1 g(Xi, θ̂) = 0.

It is known (Glivenko-Cantelli Theorem) that the empirical cdf F̂N (x) converges w.p.1 to
F (x) uniformly in x ∈ R, that is supx∈R |F̂N (x) − F (x)| converges w.p.1 to 0 as N tends to
infinity. If T (·) is continuous (in a certain sense), it follows then that T (F̂N ) converges to T (F )
w.p.1, i.e., θ̂ = T (F̂N ) is a consistent estimator of θ = T (F ).

Asymptotic normality Consider probability distributions F and G. Their convex combina-
tion is

(1− t)F + tG = F + t(G− F ), t ∈ [0, 1].

The directional derivative of T (·) at F in the direction G− F is

T ′(F,G− F ) = lim
t↓0

T (F + t(G− F ))− T (F )

t
.

That is, T ′(F,G− F ) is the right side derivative of Ft := (1− t)F + tG at t = 0. Let G = F̂N .
Then

T ′(F, F̂N − F ) = T ′
(
F,N−1

∑N
i=1 δXi − F

)
= T ′

(
F,N−1

∑N
i=1[δXi − F ]

)
.

Suppose further that T ′(F, ·) is linear (as a function of the direction), then it follows by the
above that

T ′(F, F̂N − F ) = N−1
∑N

i=1 T
′ (F, δXi − F ) .

Now we use the following approximation

θ̂ − θ = T (F̂N )− T (F ) ≈ T ′(F, F̂N − F ) = N−1
N∑
i=1

ICT,F (Xi),

8Quantile F−1(α), α ∈ (0, 1), is defined by the equation F (x) = α. Solution of this equation could be not unique
or does not exist if the cdf F (·) is discontinuous. Therefore the left side quantile is defined as inf{x : F (x) ≥ α},
and the right side quantile is defined as sup{x : F (x) ≤ α}. If the left side and right side quantiles are different
from each other, sometimes their average is taken as the corresponding quantile.
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where

ICT,F (x) := T ′(F, δx − F ) = lim
t↓0

T ((1− t)F + tδx)− T (F )

t
,

is the so called Influence Curve (or Influence Function).

Let us note that EF [ICT,F (X)] = 0. Indeed suppose for the moment that F has discrete
distribution, i.e., F =

∑m
i=1 piδxi for some xi and probabilities pi > 0. Then

EF [ICT,F (X)] =
m∑
i=1

piICT,F (xi) =
m∑
i=1

piT
′(F, δxi − F ) = T ′

(
F,

m∑
i=1

piδxi − F
)
,

where the last equality holds by linearity of T ′(F, ·) and since
∑m

i=1 pi = 1. Since∑m
i=1 piδxi = F and T ′(F, F − F ) = 0, it follows that EF [ICT,F (X)] = 0.

By the above

N1/2
[
T (F̂N )− T (F )

]
≈ N−1/2

N∑
i=1

ICT,F (Xi). (20.1)

Since EF [ICT,F (Xi)] = 0, we have by the CLT that N−1/2
∑N

i=1 ICT,F (Xi) converges in distri-
bution to normal with zero mean and variance

σ2
T,F = EF

[
ICT,F (X)2

]
= VarF [ICT,F (X)] .

This suggests that N1/2
[
T (F̂N ) − T (F )

]
converges in distribution to normal N (0, σ2) with

σ2 = VarF [ICT,F (X)].

These derivations of asymptotic normality of T (F̂N ) are somewhat heuristic since the ap-
proximation (20.1) is not rigorously justified. Nevertheless it usually gives correct results, which
could be proved by ad hoc methods, and is routinely used in applications.

For example, consider the median functional T (F ) = F−1(1/2) (here F is the cumulative
distribution function). Suppose that the (population) median m = F−1(1/2) is uniquely defined
and the distribution has density dF (m)/dx = f(m) at x = m.

Let us compute the directional derivative T ′(F,G−F ) for some cdf G. Let Ft = (1−t)F+tG
and consider T (Ft) = F−1

t (1/2). We have that Ft(T (Ft)) = 1/2, i.e.,

(1− t)F (T (Ft)) + tG(T (Ft)) = 1/2.

Computing derivative of the above with respect to t gives

−F (T (Ft)) + (1− t)dF (T (Ft))

dt
+G(T (Ft)) + t

dG(T (Ft))

dt
= 0. (20.2)

At t = 0 we have that F0 = F and

dF (T (Ft))

dt

∣∣∣
t=0

= f(m)
dT (Ft))

dt

∣∣∣
t=0

. (20.3)

Equation (20.2) (for t = 0) together with (20.2) imply that

−F (m) +G(m) + f(m)
dT (Ft))

dt

∣∣∣
t=0

= 0,
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and hence (since F (m) = 1/2)

T ′(F,G− F ) =
dT (Ft))

dt

∣∣∣
t=0

=
1/2−G(m)

f(m)

We obtain that

ICT,F (x) = T ′(F, δx − F ) =
1/2− δx(m)

f(m)
,

where δx is the cdf such that δx(t) = 0 for t < x, and δx(t) = 1 for t ≥ x.
Note that EF [ICT,F (X)] = 0 (as it should be), since EF [δX(m)] = P (X ≤ m) = 1/2. Also

VarF [δX(m)] = 1/2− 1/4 = 1/4 and hence

VarF [ICT,F (X)] =
VarF [δX(m)]

f(m)2
=

1

4f(m)2
.

We obtain that N1/2
[
T (F̂N )− T (F )

]
converges in distribution to normal N

(
0, 1

4f(m)2

)
. That is

the sample median has approximately normal distribution with variance 1
4Nf(m)2

, provided that

the population median m is defined uniquely and the distribution has density f(m) = dF (m)/dx
at x = m.

For example suppose that variables Xi have normal distribution N (µ, σ2). In that case the
median m = µ. Asymptotic variance of the sample median is N−1σ2(π/2), while variance of X̄
is N−1σ2. In that case X̄ is a better estimator of m = µ.

However, suppose now that Xi have Laplace distribution with f(x, θ) = 1
2e
−|x−θ|, θ ∈ R.

Then θ is the mean and median of the distribution, and N1/2(θ̂ − θ) converges in distribution
to normal N (0, 1). We have here that Var(Xi) = 2 and hence variance of X̄ is 2N−1, while
the asymptotic variance of the sample median is N−1. It is also interesting to note that the
MLE θ̂ is the sample median. Now ∂ log f(x, θ)/∂θ is equal 1 if θ < x and −1 if θ > x. Thus
∂2 log f(x, θ)/∂θ2 = 0 for θ 6= x, and ∂2 log f(x, θ)/∂θ2 is not defined for θ = x. Hence formula
(8.4) for the information number cannot be applied, i.e., the situation here is not standard.

As another example suppose that Y has has Cauchy distribution, i.e., Y = V/W with
independent V ∼ N (0, 1) and W ∼ N (0, 1). Cauchy distribution has pdf fY (y) = 1

π(1+y2)
.

Therefore in that case asymptotic variance of the sample median is N−1π2/4. On the other
hand, E|Y | = +∞ and the average X̄ has the same distribution as m + Y for any sample size
N , and will not converge to m as N →∞.

Finite sample interpretation of the influence curve. By adding one more observation
XN+1 to sample X1, ..., XN , we have that

F̂N+1(·) =
N

N + 1
F̂N (·) +

1

N + 1
δXN+1

(·) = (1− t)F̂N (·) + tδXN+1
(·),

where t = 1/(N + 1). Hence we can write

θ̂N+1 ≈ θ̂N +
1

N + 1
ICT,F̂N (XN+1).

This shows sensitivity of the estimator to one observation. If VarF [ICT,F (X)] is large, the

estimator T (F̂N ) can be sensitive just to one observation.
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21 Bootstrap

21.1 Jackknife bias estimation.

Consider an estimator θ̂ = θ̂(X1, ...,XN ). Denote

θ̂−i = θ̂(X1, ...,Xi−1,Xi+1, ...,XN ), i = 1, ..., N,

i.e., θ̂−i is obtained by removing data point Xi from calculation of θ̂. Let θ̄ = N−1
∑N

i=1 θ̂−i.

The Jackknife estimator of the bias is (N − 1)(θ̄ − θ̂). Bias corrected version Jackknife
estimator

θ̂jack = θ̂ − (N − 1)(θ̄ − θ̂) = Nθ̂ − (N − 1)(θ̄). (21.1)

Theoretical justification. Suppose that

Eθ[θ̂] = θ +N−1a(θ),

i.e., bias bθ(θ̂) = N−1a(θ), of θ̂, is of order O(1/N). Then E[θ̂−i] = θ+ (N − 1)−1a(θ) and hence

E[θ̄] = N−1
n∑
i=1

E[θ̂−i] = θ + (N − 1)−1a(θ),

and thus
E[θ̂ − θ̄] = N−1a(θ)− (N − 1)−1a(θ) = [N(N − 1)]−1a(θ).

It follows that
E[(N − 1)(θ̂ − θ̄)] = −N−1a(θ),

and hence E[θ̂jack] = θ, i.e. θ̂jack is an unbiased estimator of θ.

21.2 Bootstrap method

The idea of resampling used in the Jackknife estimation is further extended in the Bootstrap
method. Let θ̂ = θ̂(X1, ...,XN ) be an estimator which is a function of sample X1, ...,XN .
Suppose that we want to evaluate statistical properties of that estimator without assuming a
parametric model. For example we would like to construct two sided 95% confidence interval for
this estimator. This means that we need to evaluate 2.5% and 97.5% quantiles of the distribution
of θ̂. Note that both quantiles are functions of the true distribution F of the sample. If we knew
the true distribution F we can proceed by using the so called Monte Carlo sampling techniques.
That is, we generate a sample X̃1, ..., X̃N from F and compute θ̃ = θ̂(X̃1, ..., X̃N ). We repeat
this procedure independently M times. In that way we generate M independent replications
θ̃1, ..., θ̃M of the random variable θ̂. Consequently for sufficiently large M , we can accurately
reconstruct the true distribution of θ̂, and hence to evaluate the required quantiles, or some
other parameters. For example we can estimate variance of θ̂ as

V̂ar(θ̂) =
1

M − 1

M∑
m=1

(
θ̃m − ¯̃

θ
)2
,

where
¯̃
θ = 1

M

∑M
m=1 θ̃m.

Of course the true distribution F is not known. So we replace it by the empirical distribution
F̂N = N−1

∑N
i=1 δXi . Then we proceed by generating a random sample X∗1, ...,X

∗
N from F̂N

and compute θ̂∗ = θ̂(X∗1, ...,X
∗
N ). We repeat this procedure M times to obtain values θ̂∗1, ..., θ̂

∗
M ,
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which can be used to estimate quantity of interest. Generating a sample X∗1, ...,X
∗
N from F̂N

means resampling from the data set (sample) X1, ...,XN . That is, an element X∗i is chosen
at random from the set {X1, ...,XN}. This is repeated N times with replacement, to generate
one realization X∗1, ...,X

∗
N . So each element of the generated sample X∗1, ...,X

∗
N coincides with

some element of the original sample X1, ...,XN .
This procedure is easy to implement and does not require any modelling assumptions. On

the other hand, it is solely based on the sample (the data) X1, ...,XN and can be very sensitive
to outliers. Its theoretical analysis is quite sophisticated and is based of theory of statistical
estimators of functionals θ = T (F ).

22 Robust statistics

Let ρ : R→ R+ be a convex function such that ρ(0) = 0. Consider the problem

min
θ

E
[
ρ(X − θ)

]
.

For example if ρ(t) = t2 this becomes the least squares problem, its solution is θ∗ = E[X].
Another example ρ(t) = |t|. In that case solution θ∗ is the median of the distribution of X.
The sample median is much less sensitive to outliers than the average. Another example which
tries to combine local efficiency of least squares with robustness of absolute value deviations is
ρ(t) = t2 for |t| ≤ 2, and ρ(t) = |t|+ 2 for |t| ≥ 2. So when observation in the interval [−2, 2] it
works like least squares, outside that interval it could deal with outliers as the absolute deviation
method.

As another example for α ∈ (0, 1) let

ρα(t) =

{
−(1− α)t if t ≤ 0,

αt if t ≥ 0.
(22.1)

Consider the problem
min
θ∈R

E
[
ρα(X − θ)

]
. (22.2)

We have that
∂E[ρα(X − θ)]/∂θ = E[∂ρα(X − θ)/∂θ],

with ∂ρα(X − θ)/∂θ is equal to (1 − α) for X − θ < 0, and −α for X − θ > 0. Suppose that
F (x) is continuous at x = θ. It follows that

∂E[ρα(X − θ)]/∂θ = F (θ)− α,

where F (x) = Prob(X ≤ x) is the cdf of X. Thus the quantile θ = F−1(α) is the optimal solution
of problem (22.2). In particular for α = 1/2, ρα(t) = 1

2 |t| and solution of problem (22.2) is the
median of the distribution. As it was discussed in section 20, the left side inf{x : F (x) ≥ α}, and
the right side sup{x : F (x) ≤ α} quantiles can be different from each other. In that case optimal
solution of problem (22.2) can be any point between the left side and right side quantiles.

22.1 Quantile regression

Quantile regression use function ρα(·), defined in (22.1), to fit linear model to the data. That
is, consider the problem

min
β∈Rk+1

E[ρα(Y − β′X)], (22.3)
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where Y andX = (1, X1, ..., Xk)
′ are random variables. Given data Yi andXi = (1, Xi1, ..., Xik)

′,
i = 1, ..., N , the sample counterpart of problem (22.3) is

min
β∈Rk+1

N∑
i=1

ρα(Yi − β′Xi), (22.4)

The solution β̂ of problem (22.4) can be viewed as an estimator of the solution of problem (22.3).
For α = 1/2 this becomes the least absolute deviations method for solving linear regression. Both
problems (22.3) and (22.4) could have more than one optimal solution.

Problem (22.4) can be written as the linear program

min
β,v+,v−

N∑
i=1

(1− α)v−i + αv+
i

s.t. Yi − β′Xi = v+
i − v

−
i , i = 1, ..., N,

v−i ≥ 0, v+
i ≥ 0, i = 1, ..., N.

It is possible to show that under some regularity conditions, in particular if Y has pdf fY (·),√
N(β̂ − β) converges in distribution to normal with zero mean vector and covariance matrix

α(1− α)Ψ−1ΩΨ−1 with Ψ = E[fY (β′X)XX ′] and Ω = E[XX ′].

23 Bayes estimators

Recall Bayes’ formula: if {Ai} is a partition of the sample space and B is an event such that
P (B) 6= 0 then

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

.

Let X = (X1, ...,XN ) be a sample with X ∼ f(x, θ). Suppose that θ is random with
pdf π(θ), referred to as the prior distribution. Denote by f(x|θ) the sampling distribution
conditional on θ. Then the joint distribution of X and θ is f(x, θ) = f(x|θ)π(θ). By Bayes’
formula, the distribution of θ, conditional on X = x, is

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

, (23.1)

that is π(θ|x) is proportional to f(x|θ)π(θ), written π(θ|x) ∝ f(x|θ)π(θ). The distribution
(pdf) π(θ|x) is called the posterior distribution.

Example 23.1 Suppose that Xi ∼ N (θ, σ2) and θ ∼ N (µ, τ2), where σ2, µ and τ2 are supposed
to be known. We have that

f(x|θ)π(θ) =
1

(
√

2πσ)N
e−

∑N
i=1(xi−θ)2/2σ2 1√

2πτ
e−(θ−µ)2/2τ2 ,

and hence

f(x|θ)π(θ) ∝ exp


−
(
θ − τ2

∑N
i=1 xi+µσ

2

Nτ2+σ2

)2

2
(

σ2τ2

Nτ2+σ2

)
 .

It follows that the posterior distribution π(θ|x) is normal with conditional mean

E[θ|x] =
τ2

τ2 + σ2/N
x̄+

σ2/N

τ2 + σ2/N
µ
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and conditional variance

Var(θ|x) =
(σ2/N)τ2

σ2/N + τ2
.

Note that E[θ|x] − x̄ tends to 0 and Var(θ|x) tends to 0 as N → ∞. That is, if we view the
‘true’ distribution of the sample as normal with mean θ∗ and variance σ2, then the average X̄
converges in probability to θ∗, and the Bayes estimator converges in probability to θ∗, i.e. for any
ε > 0 the probability Prob(|π(θ|x)− θ∗| > ε) converges to 0 w.p.1 as N →∞. The probability
is with respect to the true distribution of Xi and the convergence w.p.1 is with respect to the
true distribution.

This is a general property of Bayes estimators. If we assume that the true distribution
of the sample Xi, i = 1, ..., is f(x, θ∗) for some θ∗ ∈ Θ, then (under some regularity
conditions) Bayes estimator converges in probability to θ∗ for almost every (with respect
to the true distribution) sequence X1, ... .

In general it may be not easy to compute the posterior distribution. The problem is in
calculation of the integral in the right hand side of (23.1). In the above example it was possible
to compute the posterior distribution in a closed form, and the posterior distribution was in the
same family of normal distributions. Such families of distributions are called conjugate families.

Example 23.2 One parameter exponential family

f(x|θ) = exp
[
η(θ)T (x)−A(θ)

]
h(x),

with prior
π(θ) ∝ exp[αη(θ)− βA(θ)].

Then posterior distribution

f(θ|x)π(θ) ∝ exp
[
η(θ)(T (x) + α)− (β + 1)A(θ)

]
is in the same family of one parameter exponential distributions. �

23.1 Bayesian decisions

Consider a loss function L(θ, a) (see definition 8.5) and let δ(X) be a decision rule, e.g., δ(X)
is an estimator of parameter θ. The corresponding risk function is

R(θ, δ) = Eθ[L(θ, δ(X))] =

∫
L(θ, δ(x)) f(x, θ)dx.

For example, let L(θ, a) = (θ − a)2. Then

R(θ, δ) = Eθ[(θ − δ(X))2] = Varθ(δ(X)) +
(
Eθ[δ(X)]− θ︸ ︷︷ ︸

bias(δ(X))

)2
is the Mean Square Error of the estimator δ(X) of θ.

Bayes risk, with prior π(θ):

B(π, δ) = Eπ[R(θ, δ)] =

∫
R(θ, δ)π(θ)dθ =

∫ (∫
L(θ, δ(x))f(x|θ)dx

)
π(θ)dθ.

The Bayes rule with respect to the prior π(θ) is

δπ ∈ arg min
δ∈D

B(π, δ), (23.2)

where D is a family of decision rules.
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Theorem 23.1 Define

r(x, a) =

∫
L(θ, a)π(θ|x)dθ,

and let δπ(x) be a minimizer of r(x, a), i.e., δπ(x) ∈ arg mina r(x, a). Suppose that δπ ∈ D.
Then δπ is the Bayes rule with respect to π.

Proof. Denote m(x) :=
∫
f(x|θ)π(x). We can write

B(π, δ) =

∫ (∫
L(θ, δ(x))f(x|θ)dx

)
π(θ)dθ

=

∫ ∫
L(θ, δ(x))f(x|θ)π(θ)dxdθ

=

∫ ∫
L(θ, δ(x))π(θ|x)m(x)dθdx

=

∫ ∫
r(x, δ(x))m(x)dx.

Since δπ(x) ∈ arg mina r(x, a), we have that for any δ ∈ D,

r(x, δπ(x))m(x) ≤ r(x, δ(x))m(x).

It follows that δπ is a minimizer of B(π, δ) over δ ∈ D, provided δπ ∈ D. �

For squared error loss L(θ, a) = (θ − a)2, we have

r(x, a) =

∫
(θ − a)2π(θ|x)dθ,

and hence

δπ(x) =

∫
θ π(θ|x)dθ = Eπ[θ|X = x]

is the posterior mean. For the absolute error loss L(θ, a) = |θ − a|, the Bayes rule δπ(x) is the
posterior median.

Definition 23.1 It is said that decision rule δ′ is as good as δ if R(θ, δ′) ≤ R(θ, δ) for all θ ∈ Θ.
Moreover, if R(θ, δ′) < R(θ, δ) for some θ ∈ Θ, it is said that δ′ is better than δ.

A decision rule δ ∈ D is admissible if there is no δ′ ∈ D that is better than δ.

The following example shows that an admissible decision rule can be quite awkward.

Example 23.3 Suppose that X has Binomial distribution Bin(n, θ), i.e., for x = 0, 1, ..., n,

P (X = x) =

(
n
x

)
θx(1− θ)n−x, θ ∈ (0, 1).

Let δ(x) = c for some constant c ∈ (0, 1) and all x = 0, ..., n, and L(θ, a) = (θ − a)2 be the loss
function. Then

R(c, δ) =
n∑
x=0

(δ(x)− c)2P (X = x|θ = c) = 0.

Let δ′ be as good as δ. Then

0 ≤
n∑
x=0

(δ′(x)− c)2P (X = x|θ = c) = R(c, δ′) ≤ R(c, δ) = 0.

Therefore δ′(x) = c for all x = 0, ..., n, and hence δ′ = δ. It follows that δ is admissible. �

72



Theorem 23.2 Suppose that R(θ, δ) is continuous in θ and for every θ ∈ Θ there is ε > 0 such
that

∫
Vε,θ

π(θ)dθ > 0, where Vε,θ = {θ′ ∈ Θ : ‖θ′− θ‖ ≤ ε} is the ε - neighborhood of θ. Then δπ

is an admissible decision rule.

Proof. We argue by a contradiction. Suppose that δ ∈ D is a decision rule which is better
than δπ. Since

δπ ∈ arg min
δ∈D

B(π, δ) = arg min
δ∈D

∫
R(θ, δ)π(θ)dθ,

we have that

0 ≥
∫
R(θ, δπ)π(θ)dθ −

∫
R(θ, δ)π(θ)dθ

=

∫ [
R(θ, δπ)−R(θ, δ)

]
π(θ)dθ.

On the other hand, since δ is better than δπ,

R(θ, δπ)−R(θ, δ) ≥ 0, ∀θ ∈ Θ,

and there is a point θ∗ ∈ Θ such that R(θ∗, δπ) − R(θ∗, δ) > 0. Since R(θ, δ) is continuous in
θ, there is a neighborhood Ξ of θ∗ and γ > 0 such that R(θ, δπ) − R(θ, δ) ≥ γ for all θ ∈ Ξ.
By the assumption of the theorem there is ε - neighborhood V of θ∗ such that V ⊂ Ξ and∫
V π(θ)dθ > 0. It follows that∫

[R(θ, δπ)−R(θ, δ)]π(θ)dθ ≥ γ
∫
V
π(θ)dθ > 0.

This gives the required contradiction. �

Let T (X) be a sufficient statistic for θ, and let L(θ, a) be a loss function. Suppose that
L(θ, a) is convex in a for all θ. Consider δ∗(t) = E[δ(X)|T = t]. Note that by sufficiency of T ,
δ∗(t) does not depend on θ. Since L(θ, a) is convex in a, we have by Jensen inequality

E[L(θ, δ(X)|T ] ≥ L(θ,E[δ(X)|T ]) = L(θ, δ∗(T )).

It follows

R(θ, δ) = Eθ
[
E[L(θ, δ(X))|T ]

]
≥ Eθ[L(θ,E[δ(X)|T ])] = Eθ[L(θ, δ∗(T ))] = R(θ, δ∗).

That is, δ∗ is as good as δ. Therefore if δ is admissible, then δ∗ is also admissible.

Minimax decision rules. Consider

δ′ ∈ arg min
δ∈D

{
sup
θ∈Θ

R(θ, δ)
}
.

That is, decision rule δ′ is minimax if

sup
θ∈Θ

R(θ, δ′) = inf
δ∈D

{
sup
θ∈Θ

R(θ, δ)
}
.

Theorem 23.3 Suppose that δ is a unique minimax decision rule. Then δ is admissible.
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Proof. Consider δ′ ∈ D. Then since δ is minimax

sup
θ∈Θ

R(θ, δ′) ≥ sup
θ∈Θ

R(θ, δ).

Moreover since δ is unique we have, that if δ′ 6= δ, then

sup
θ∈Θ

R(θ, δ′) > sup
θ∈Θ

R(θ, δ),

i.e., δ′ is not better than δ. It follows that δ is admissible. �

How minimax decision rules are related to Bayes rules.

Proposition 23.1 If
sup
θ∈Θ

R(θ, δπ) ≤ B(π, δπ),

then δπ is a minimax decision rule.

Proof. If δπ is not minimax, then for some δ′

sup
θ∈Θ

R(θ, δ′) < sup
θ∈Θ

R(θ, δπ).

For any prior π(θ) we have

B(π, δ) =

∫
R(θ, δ)π(θ)dθ ≤ sup

θ∈Θ
R(θ, δ)

∫
π(θ)dθ = sup

θ∈Θ
R(θ, δ).

Hence then
B(π, δ′) ≤ sup

θ∈Θ
R(θ, δ′) < sup

θ∈Θ
R(θ, δπ) ≤ B(π, δπ),

which contradicts minimality of δπ for B(π, ·). �

Saddle point

Consider problems
max
y∈Y

min
x∈X

g(x, y), (23.3)

min
x∈X

max
y∈Y

g(x, y), (23.4)

where X and Y are nonempty sets and g : X × Y → R is a real valued function. We have
that for any (x′, y′) ∈ X × Y ,

ψ(y′) = min
x∈X

g(x, y′) ≤ g(x′, y′) ≤ max
y∈Y

g(x′, y) = ϕ(x′).

It follows that
max
y∈Y

ψ(y) ≤ min
x∈X

ϕ(x).

Therefore we have that

max
y∈Y

min
x∈X

g(x, y) ≤ min
x∈X

max
y∈Y

g(x, y), (23.5)

i.e., optimal value of problem (23.3) is less then or equal to the optimal value of problem
(23.4).
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Now suppose that ψ(ȳ) = ϕ(x̄) for some (x̄, ȳ) ∈ X × Y . By (23.5) this implies that
optimal values of problems (23.3) and (23.4)are equal to each other and

ȳ ∈ arg max
y∈Y

ψ(y) and x̄ ∈ arg min
x∈X

ϕ(x).

That is
max
y∈Y

g(x̄, y) = g(x̄, ȳ) = min
x∈X

g(x, ȳ). (23.6)

A point (x̄, ȳ) ∈ X × Y satisfying the above condition (23.6) is called saddle point.

Let (x̄, ȳ) ∈ X × Y be a saddle point. Then

ϕ(x̄) = max
y∈Y

g(x̄, y) = g(x̄, ȳ) = min
x∈X

g(x, ȳ) = ψ(ȳ).

• It follows that if a saddle point (x̄, ȳ) exists, then the optimal values of problems (23.3)
and (23.4) are equal to each other, ȳ is an optimal solution of problem (23.3) and x̄ is an
optimal solution of problem (23.4). Conversely if the optimal values of problems (23.3)
and (23.4) are equal to each other, and ȳ is an optimal solution of problem (23.3) and x̄
is an optimal solution of problem (23.4), then (x̄, ȳ) is a saddle point. �

24 Spherical and elliptical distributions

An m× 1 random vector X is said to have spherical distribution if X and TX have the same
distribution for any m×m orthogonal matrix T .

Examples

(i) Normal distribution X ∼ Nm(0, σ2Im). The corresponding density function

f(x) =
1

(2πσ2)m/2
exp

(
− 1

2σ
−2x′x

)
.

(ii) ε-contaminated normal distribution, with pdf (1− ε)f1(x) + εf2(x), ε ∈ [0, 1], where fi(·)
is pdf of Nm(0, σ2

i Im), i = 1, 2.

(iii) Multivariate t-distribution with n degrees of freedom. Its pdf is

f(x) =
Γ[ 12(n+m)]

Γ( 1
2n)(πn)m/2

1

(1 + n−1x′x)(n+m)/2
,

where Γ(t) =
∫∞

0 xt−1e−xdx. This is distribution of random vector X = Z−1/2n1/2Y ,
where Z ∼ χ2

n and Y ∼ Nm(0, Im), and Z and Y are independent. This is the multivariate
counterpart of t-distribution with n degrees of freedom.

Spherical distributions can be generated in the following way. Let X1, ..., Xm be random
variables such that conditional on random variable Z > 0, Z ∼ G(·), these variables are iid
N(0, Z). Then the pdf of random vector X = (X1, ..., Xm)′ is

f(x) =

∫ ∞
0

(2πz)−m/2 exp
(
− 1

2z
−1x′x

)
dG(z).
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This is scale mixture of normal distributions. In particular, if Z can have two possible values
σ2

1 and σ2
2 with respective probabilities 1 − ε and ε, then this is the ε-contaminated normal

distribution. If Z ∼ n/χ2
n, then X has m-variate t-distribution with n degrees of freedom.

Recall that the characteristic function of a random vector X is φX(t) := E[exp(it′X)], where
i2 = −1 and eiθ = cos θ + i sin θ. If X has spherical distribution, then X and TX have the
same distribution for any orthogonal matrix T and hence

φX(t) = E[exp(it′X)] = E[exp(it′TX)] = E[exp(i(T ′t)′X)] = φX(T ′t).

It follows that φX(t) is a function of t′t, i.e.,

φX(t) = ψ(t′t) (24.1)

for some function ψ(·) of nonnegative real valued variable. Conversely suppose that the char-
acteristic function of a random vector X can be represented in the form (24.1). Then for any
orthogonal matrix T the characteristic function of X is the same as the characteristic function
of TX and hence they have the same distribution. It follows that distribution ofX has spherical
distribution iff the characteristic function of X can be represented in the form (24.1).

It is said that an m×1 random vector X has elliptical distribution with parameters µ ∈ Rm
and symmetric positive definite m×m matrix V = [vij ]i,j=1,...,m if its pdf is

f(x) = cm|V |−1/2h
(
(x− µ)′V −1(x− µ)

)
for some function h : R→ R+. The constant cm > 0 is adjusted in such a way that

∫
f(x)dx = 1.

We use notation X ∼ Em(µ,V ) for elliptical distributions. Note that X ∼ Em(µ,V ) iff
Y = V −1/2(X − µ) has spherical distribution.

If X ∼ Em(µ,V ), then X = µ+ V 1/2Y where Y has spherical distribution, and hence its
characteristic function can be written as

φX(t) = E
[
exp

(
it′(µ+ V 1/2Y )

)]
= exp(it′µ)E[exp(it′V 1/2Y )].

Since Y has spherical distribution we have by (24.1) that

E[exp(it′V 1/2Y ] = ψ((V 1/2t)′(V 1/2t)) = ψ(t′V t).

That is, the characteristic function of X ∼ Em(µ,V ) can be represented in the form

φX(t) = exp(it′µ)ψ(t′V t) (24.2)

for some function ψ(·). If X ∼ Nm(µ,Σ), then by equation (2.2),

φX(t) = exp(it′µ− t′Σt/2). (24.3)

In that case ψ(u) = e−u/2 for u ≥ 0 with V = Σ.
Let X ∼ Em(µ,V ) and A be an k × m matrix of full row rank k. Then random vector

Y = AX has characteristic function

φY (t) = E[exp(it′AX)] = E[exp(i(A′t)′X)] = φX(A′t) = exp(it′Aµ)ψ(t′AV A′t).

It follows that Y ∼ Ek(Aµ,AV A′). In particular let X be partitioned X =

[
X1

X2

]
, with the

corresponding partitioning of µ =

[
µ1

µ2

]
and V =

[
V 11 V 12

V 21 V 22

]
, where X1 is m1 × 1 and

X2 is m2 × 1 subvectors of X. Then X1 ∼ Em1(µ1,V 11) with the characteristic function

φX1(t1) = exp(it′1µ1)ψ(t′1V 11t1), (24.4)
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and similarly for X2.
Now suppose that components of random vector X = (X1, ..., Xm) have finite second order

moments. Then
∂φX(0)/∂t = iE[X] (24.5)

and
∂2φX(0)/∂t∂t′ = −E[XX ′] = −µµ′ − Cov(X). (24.6)

It follows from (24.2) together with (24.5) and (24.6), that if X ∼ Em(µ,V ), then E[X] = µ
and Cov(X) = αV , where α = −2ψ′(0). In particular this implies that

Corr(Xi, Xj) =
vij√
viivjj

, i, j = 1, ...,m. (24.7)

By (24.7) we have that ifX ∼ Em(µ,V ) and V = diag(v11, ..., vmm) is diagonal, then X1, ..., Xm

are uncorrelated.

Theorem 24.1 Let X = (X1, ..., Xm)′ ∼ Em(µ,V ), m ≥ 2, and V = diag(v11, ..., vmm). If
X1, ..., Xm are all independent, then X has multivariate normal distribution.

Proof. By replacing X with X−µ, we can assume without loss of generality that µ = 0. Since
matrix V = diag(v11, ..., vmm) is diagonal we have by (24.2) that the characteristic function of
X is

φX(t) = ψ(t′V t) = ψ
(∑m

i=1 t
2
i vii
)
.

Since X1, ..., Xm are independent, we have that

φX(t) = E[exp(it′X)] = E
[∏m

i=1 e
itiXi

]
=
∏m
i=1 E

[
eitiXi

]
=
∏m
i=1 φi(ti),

where φi(ti) is the characteristic function of Xi, i = 1, ...,m. By (24.4), φi(ti) = ψ(t2i vii), and
thus it follows that

ψ
(∑m

i=1 u
2
i

)
=
∏m
i=1 ψ(u2

i ), (24.8)

where ui := tiv
1/2
ii .

In turn equation (24.8) implies that ψ(u) = e−κu/2 for some κ and u > 0. Indeed suppose
that equation (24.8) holds. Then for any natural number p, ψ(1) = ψ(1/p + ... + 1/p) =
ψ(1/p)p and hence ψ(1/p) = ψ(1)1/p. Furthermore for a rational positive number q/p we have
ψ(q/p) = ψ(1/p + ... + 1/p) = ψ(1/p)q. It follows that ψ(q/p) = ψ(1)q/p for any positive
rational number p/q. Moreover since function ψ(·) is continuous, it follows that for u > 0,
ψ(u) = ψ(1)u = e−κu/2 for κ := −2 logψ(1). Since Cov(X) = αV , where α = −2ψ′(0), we have
then that Cov(X) = κV , and hence κ > 0. It follows by (24.2) that the characteristic function
of X is φX(t) = exp(−kt′V t/2). That is, the characteristic function of X coincides with the
characteristic function of normal distribution with mean vector µ = 0 and covariance matrix
Σ = kV . �

24.1 Multivariate cumulants

Consider a random variable X. Let

logE[etX ] =

∞∑
n=1

κn
tn

n!
(24.9)
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be Taylor expansion of its log-moments generating function (note that for t = 0 this function is
0). The coefficient κn is called n-th cumulant of X. Since E[etX ] may not exist for t 6= 0, it is
preferable to define cumulants in terms of the characteristic function as

logE[eitX ] =
∞∑
n=1

κn
(it)n

n!
, (24.10)

where κn = ∂n logE[eitX ]
∂tn

∣∣
t=0

.

Denote µk := E[Xk] the k-th moment of X. Then

κ1 = µ1 = E[X],

κ2 = µ2 − µ2
1 = Var(X),

κ3 = µ3 − 3µ1µ2 + 2µ3
1,

κ4 = µ4 − 4µ1µ3 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1,

provided these moments are finite. If X and Y are two independent random variables, then

logE[eit(X+Y )] = logE[eitX ] + logE[eitY ],

and hence cumulants of X + Y are equal to the sum of the respective cumulants of X and Y .
In particular, if Y = a where a is (deterministic) number, then the first cumulant of X + a is
κ1 + a, and the cumulants of the higher order are the same as the cumulants of X.

Skewness of X is defined as
γ1 :=

κ3

κ
3/2
2

, (24.11)

kurtosis of X is defined as
γ2 :=

κ4

κ2
2

. (24.12)

As it was pointed above, the skewness and kurtosis of X are the same as the respective skewness
and kurtosis of X + a for any number a. If distribution of X is symmetrical around its mean,
then γ1 = 0. If X ∼ N(0, σ2), then µ4 = 3µ2

2 (see equation (2.4)). It follows that if X ∼ N(µ, σ2)
then its kurtosis γ2 = 0.

Consider now random vector X = (X1, ..., Xm)′. Let φj(tj) be the characteristic function of
Xj . The cumulants of Xj are defined by

log φj(tj) =

∞∑
n=1

κjn
(itj)

n

n!
.

Mixed cumulants:

log φj`(tj , t`) =
∞∑

n1=1,n2=1

κj`n1n2

(itj)
n1(it`)

n2

n1!n2!
,

and so on.
Suppose that X ∼ Em(µ,V ) has elliptical distribution. Then marginal distributions of Xj

have zero skewness and the same kurtosis

γj2 =
3[ψ′′(0)− ψ′(0)2]

ψ′(0)2
.
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Denote κ := γj2/3. Forth order cumulants of X ∼ Em(µ,V ) are

κijk`1111 = κ(σijσk` + σikσj` + σi`σjk).

Let S be the sample covariance matrix of sample of size N . By the CLT we have that
UN = N1/2(S −Σ) converges in distribution to normal with zero mean and covariances

Cov(uij , uk`) = κijk`1111 + κik11κ
j`
11 + κi`11κ

jk
11.

If X has normal distribution, then κ = 0 and

Cov(uij , uk`) = σikσj` + σi`σjk.

Denote by ΓN the corresponding m2 × m2 covariance matrix (see section 15.2), where the
subscript N emphasizes that this is under the assumption of normal distribution. For elliptical
distribution, N1/2(s − σ) converges in distribution to normal with zero mean and m2 × m2

covariance matrix Γ with
Γ = (1 + κ)ΓN + κσσ′.

25 Wishart distribution

Recall that

S =
1

N − 1

N∑
i=1

(Xi − X̄)(Xi − X̄)′

is the sample covariance matrix of random sample X1, ...,XN . Note that if X1, ...,XN is an
iid sample from normal distribution Nm(µ,Σ), then X̄ and S are independent. Indeed

Cov(X̄,Xi − X̄) = Cov(X̄,Xi)− Cov(X̄).

Now Cov(X̄,Xi) = N−1Σ and Cov(X̄) = N−2
∑N

i=1 Cov(Xi) = N−1Σ. It follows that
Cov(X̄,Xi − X̄) = 0. That is, X̄ and Xi − X̄ are uncorrelated, and because their joint
distribution is normal, are independent. Since S is a function of Xi− X̄, i = 1, ..., N , it follows
that X̄ and S are independent.

Let Z1, ...,Zn be an iid sequence of random vectors having normal distribution Nm(0,Σ).
Consider random matrix

A = Z1Z
′
1 + ...+ZnZ

′
n. (25.1)

By definition A has Wishart distribution, denoted A ∼Wm(n,Σ). In particular, for m = 1 and
Zi ∼ N (0, σ2), the corresponding A/σ2 has chi-square distribution with n degrees of freedom.

Wishart distribution has the following properties.

(i) If A ∼Wm(n,Σ) and α > 0, then αA ∼Wm(n, αΣ). Indeed,

αA = (α1/2Z1)(α1/2Z1)′ + ...+ (α1/2Zn)(α1/2Zn)′,

and α1/2Zi ∼ N (0, αΣ).

(ii) If A ∼ Wm(n,Σ) and B is m × k deterministic matrix, then B′AB ∼ Wk(n,B
′ΣB).

Indeed,
B′AB = (B′Z1)(B′Z1)′ + ...+ (B′Zn)(B′Zn)′,

and B′Zi ∼ N (0,B′ΣB).
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(iii) Equation (25.1) can be written in the following form A = Z ′Z, where Z is n×m matrix

Z =


Z′1
·
·
·
Z′n

 with Z ′ = [Z1, ...,Zn]. Note that E[Z] = 0 and the covariance matrix of the

corresponding mn× 1 vector vec(Z ′) is 9

Cov(vec(Z ′)) = In ⊗Σ. (25.2)

Proposition 25.1 Let X1, ...,XN
iid∼ Nm(µ,Σ) and S be the sample covariance matrix. Then

S ∼Wm(n, n−1Σ), where n = N − 1.

Proof. Consider N ×m matrix W with rows Xi − X̄, i.e., W ′ = [X1 − X̄, ...,XN − X̄].
Note that S = n−1W ′W and W = (IN − N−11N1′N )X, where X ′ = [X1, ...,XN ]. Matrix
IN−N−11N1′N is a symmetric projection matrix of rank N−1. Hence IN−N−11N1′N = HH ′,
where H is N × n matrix with H ′H = In and H ′1N = 0 (spectral decomposition). Consider
the following n×m matrix Z = H ′X. Then

Z ′Z = X ′HH ′X = X ′(IN −N−11N1′N )X = W ′W ,

and hence S = n−1Z ′Z. Note that E[X] = 1Nµ
′ and hence E[Z] = H ′E[X] = H ′1Nµ

′ = 0.
Now Cov(vec(X ′)) = IN ⊗Σ and (see (15.22))

vec(X ′H) = (H ′ ⊗ Im)vec(X ′).

Thus using (15.21),

Cov(vec(Z ′)) = Cov(vec(X ′H)) = (H ′ ⊗ Im)(IN ⊗Σ)(H ⊗ Im) = (H ′H)⊗Σ = In ⊗Σ.

Hence Z ′Z ∼Wm(n,Σ), and S ∼Wm(n, n−1Σ). �

Theorem 25.1 If A ∼Wm(n,Σ) and Y is an m×1 random vector independent of A and such
that Prob(Y = 0) = 0, then random variable Y ′AY

Y ′ΣY
∼ χ2

n and is independent of Y .

Proof. Conditional on Y , we have that Y ′AY ∼W1(n,Y ′ΣY ) and hence

Y ′AY

Y ′ΣY
∼W1(n, 1) = χ2

n.

That is, the conditional distribution of Y
′AY

Y ′ΣY
does not depend on Y . It follows that Y ′AY

Y ′ΣY
is

independent of Y and its (unconditional) distribution is χ2
n. �

Together with Proposition 25.1 this implies the following.

Proposition 25.2 Let X1, ...,XN
iid∼ Nm(µ,Σ) and S be the corresponding sample covariance

matrix. Then nX̄
′
SX̄

X̄
′
ΣX̄

∼ χ2
n and is independent of X̄ (recall that n = N − 1).

Proof. Since S and X̄ are independent and nS ∼ Wm(n,Σ), the result follows from
Theorem 25.1. �

9Recall definitions of Kronecker product of matrices and vec operator discussed in section 15.2.
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Theorem 25.2 Let A ∼ Wm(n,Σ) be partitioned A =

[
A11 A12

A21 A22

]
, where A11 is of order

k × k and A22 is of order (m − k) × (m − k), and matrix Σ is partitioned accordingly Σ =[
Σ11 Σ12

Σ21 Σ22

]
. Consider A11.2 = A11 −A12A

−1
22 A21 and Σ11.2 = Σ11 −Σ12Σ

−1
22 Σ21. Then

A11.2 ∼Wk(n−m+ k,Σ11.2), (25.3)

and A11.2 is independent of A22.

Proof. Since A ∼ Wm(n,Σ) it can be written in the form (25.1), or equivalently as A =

Z ′Z, where Z =


Z′1
·
·
·
Z′n

 is the respective n×m matrix. Let us partition Z = [Z̃1, Z̃2], where

Z̃1 is of order n×k and Z̃2 is of order n×(m−k). Note that Z̃1 =


Z′11

·
·
·

Z′1n

 and Z̃2 =


Z′21

·
·
·

Z′2n

,

where Zi =

[
Z1i

Z2i

]
are respective partitions of vectors Zi, i = 1, ..., n. Recall that conditional

on Z2i = z2,
Z1i ∼ N (Σ12Σ

−1
22 z2,Σ11.2) (25.4)

(see equation (2.3)). Note that matrix In − Z̃2(Z̃
′
2Z̃2)−1Z̃

′
2 is idempotent (projection) of rank

n− (m− k) = n−m+ k, and

[In − Z̃2(Z̃
′
2Z̃2)−1Z̃

′
2]Z̃2 = 0. (25.5)

Because of (25.4) and (25.5) we have that conditional on Z̃2,

Z̃
′
1[In − Z̃2(Z̃

′
2Z̃2)−1Z̃

′
2]Z̃1 ∼Wk(n−m+ k,Σ11.2).

Moreover

Z̃
′
1[In − Z̃2(Z̃

′
2Z̃2)−1Z̃

′
2]Z̃1 = Z̃

′
1Z̃1︸ ︷︷ ︸
A11

− Z̃ ′1Z̃2︸ ︷︷ ︸
A12

(Z̃
′
2Z̃2)−1︸ ︷︷ ︸
A−1

22

Z̃
′
2Z̃1︸ ︷︷ ︸
A21

= A11.2.

It follows that the (unconditional) distribution of A11.2 is Wk(n−m+ k,Σ11.2), and that A11.2

is independent of Z̃2 and hence of A22. �

Theorem 25.3 Let A ∼ Wm(n,Σ) and B be (deterministic) m × k matrix of rank k. Then
(B′A−1B)−1 ∼Wk(n−m+ k, (B′Σ−1B)−1).

Proof. Note that the assertion is invariant under linear transformations. That is, if C is an
m×m nonsingular matrix, then by replacing B with B̃ = CB and A with Ã = CAC ′ we have

B̃
′
Ã
−1
B̃ = B′A−1B. Moreover Ã ∼Wm(n, Σ̃), where Σ̃ = CΣC ′, and B̃

′
Σ̃
−1
B̃ = B′Σ−1B.
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Therefore by applying an appropriate linear transformation, we can assume thatB =

[
Ik
0

]
.

Then B′A−1B = A11, where A−1 =

[
A11 A12

A21 A22

]
. Now (see (2.7))

A11 = (A11 −A12A
−1
22 A21)−1,

and hence (B′A−1B)−1 = A11.2. By Theorem 25.2 we have that A11.2 ∼Wk(n−m+ k,Σ11.2).
It remains to note that here Σ11.2 = (B′Σ−1B)−1. �

Proposition 25.3 If A ∼ Wm(n,Σ) and Y is an m× 1 random vector independent of A and
such that Prob(Y = 0) = 0, then

Y ′Σ−1Y

Y ′A−1Y
∼ χ2

n−m+1. (25.6)

Proof. By Theorem 25.3 we have that conditional on Y , (Y ′A−1Y )−1 ∼ W1(n − m +
1, (Y ′Σ−1Y )−1). This implies (25.6). �

25.1 Hotelling’s T 2 statistic

Hotelling’s T 2 statistic is an extension of t distribution to a multivariate setting. Let X1, ...,XN

be an iid sample from normal distribution Nm(µ,Σ), and S be the sample covariance matrix.
Recall that X̄ and S are independent.

Suppose that we want to test H0 : µ = µ0 against H1 : µ 6= µ0, where µ0 is a given m× 1
vector. Hotelling’s T 2 statistic for testing H0 is

T 2 = N(X̄ − µ0)′S−1(X̄ − µ0). (25.7)

For m = 1 this statistic can be written as (X̄−µ0)2

S2/N
, where S2 = (N − 1)−1

∑N
i=1(Xi− X̄)2 is the

sample variance. So in that case T 2 = t2, where t = X̄−µ0
S/
√
N

is the usual t statistic.

We proceed now to statistical inference of Hotelling’s statistic. For n = N − 1 we can write

T 2

n
=
N(X̄ − µ0)′Σ−1(X̄ − µ0)(

n(X̄−µ0)′Σ−1(X̄−µ0)

(X̄−µ0)′S−1(X̄−µ0)

)
Under H0 we have that N1/2(X̄ − µ0) ∼ N (0,Σ), and hence N(X̄ − µ0)′Σ−1(X̄ − µ0) ∼ χ2

m.
Also by Proposition 25.1 we have that nS ∼Wm(n,Σ) and hence by Proposition 25.3,

n(X̄ − µ0)′Σ−1(X̄ − µ0)

(X̄ − µ0)′S−1(X̄ − µ0)
∼ χ2

n−m+1.

We obtain the following result.

Theorem 25.4 Let X1, ...,XN
iid∼ Nm(µ,Σ). Then under H0 : µ = µ0,

(N −m)T 2

m(N − 1)
∼ Fm,N−m. (25.8)

Note that as N →∞, the coefficient N−m
m(N−1) in (25.8) tends to 1/m. Therefore for large N the

distribution of T 2 becomes like χ2
m. This should be not surprising since by the LLN, S converges

w.p.1 to Σ, and N(X̄ − µ0)′Σ−1(X̄ − µ0) has χ2
m distribution when µ = µ0 (Theorem 3.1).
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Suppose now that we want to test linear model H0 : Aµ = c, where A is a k ×m matrix of
rank k and c is k × 1 vector. The corresponding Hotelling’s T 2 statistic is

T 2 = N min
Aµ=c

(X̄ − µ)′S−1(X̄ − µ). (25.9)

It is possible to write this in the form

T 2 = N(AX̄ − c)′(ASA′)−1(AX̄ − c). (25.10)

Indeed, suppose for the sake of simplicity that c = 0. Consider X̃ = S−1/2X̄ and Ã = AS1/2.
Then making change of variables τ = S−1/2µ we have

min
Aµ=0

(X̄ − µ)′S−1(X̄ − µ) = min
Ãτ=0

(X̃ − τ )′(X̃ − τ ). (25.11)

The right hand side of (25.11) is the squared distance from X̃ to the space orthogonal to the
one generated by matrix Ã. Hence

min
Ãτ=0

(X̃ − τ )′(X̃ − τ ) = X̃
′
Ã
′
(ÃÃ

′
)−1ÃX̃ = (AX̄)′(ASA′)−1(AX̄).

Under H0, N1/2(AX̄ − c) ∼ Nk(0,AΣA′) and

(N − k)T 2

k(N − 1)
∼ Fk,N−k. (25.12)

Indeed, consider Yi = AXi, i = 1, ..., N . We have that Yi ∼ Nk(Aµ,AΣA′). Also Ȳ = AX̄
and the corresponding sample covariance matrix is ASA′. Hotelling’s T 2 statistic for testing
H0 : Aµ = c is given by the left hand side of (25.12).

26 Spatial statistics

Consider a (real valued) function Z(x) of x ∈ Rd. Given values (observations, measurements)
of Z(·) at some points, we would like to evaluate (to estimate) value of Z(x) at a given point
x = x∗. As a modeling approach we view Z(x) as a random process. It is said that Z(x)
is stationary if for any points x1, ...,xm ∈ Rd and h ∈ Rd, random vector (Z(x1), ..., Z(xm))
has the same distribution as (Z(x1 + h), ..., Z(xm + h)). This definition of stationarity is too
general for practical use. It is said that Z(x) is second order (or weakly) stationary if its mean
E[Z(x)] is constant (independent of x), and its covariance function c(x,y) = Cov(Z(x), Z(y))
has the property that for any x,y,h ∈ Rd it follows that c(x + h,y + h) = c(x,y). Of course
any stationary process is second order stationary provided it has finite second order moments.
By taking h = −y we have then that c(x,y) = c(x − y,0). That is, for the second order
stationary process the covariance function depends on the difference x− y. So we use notation
c(x− y) = Cov(Z(x), Z(y)) for the (auto)covariance function.

The autocovariance function c(·) has the following properties. It is symmetric, i.e., c(h) =
c(−h), this follows from that Cov(Z(x), Z(y)) = Cov(Z(y), Z(x)). Since c(0) = Cov(Z(x), Z(x)) =
Var(Z(x)), it follows that c(0) > 0. We have that

|Cov(Z(x), Z(y))| ≤
√

Var(Z(x))
√

Var(Z(y))

and hence |c(h)| ≤ c(0) for all h ∈ Rd. The function c(·) should be positive definite. That is for
any x1, ...,xm ∈ Rd the covariance matrix of (Z(x1), ..., Z(xm)) should be positive semidefinite,
i.e., the m×m matrix with entries aij = c(xi−xj), i, j = 1, ...,m, should be positive semidefinite.
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The semivariogram of (stationary) process Z(x) is defined as

γ(h) := 1
2E
[
|Z(x+ h)− Z(x)|2

]
.

Note that we can assume that E[Z(h)] = 0 and hence c(0) = Var(Z(h)) = E
[
Z(h)2], and thus

γ(h) = 1
2E
[
Z(x+ h)2 + Z(x)2 − 2Z(x+ h)Z(x)

]
= c(0)− c(h).

Consider m×m matrix Γ with entries Γij = γ(xi−xj), i, j = 1, ...,m. Note that Γij = c0− cij ,
where c0 = c(0) and cij = c(xi − xj). In matrix form this can be written as Γ = c01m1′m −C,
where C is m×m matrix with entries cij .

Given observations Z(x1), ..., Z(xN ) consider the linear predictor

Ẑ(x) =
N∑
i=1

wiZ(xi).

We have that

E[Ẑ(x)] =
N∑
i=1

wiE[Z(xi)] = µ
N∑
i=1

wi,

where µ is the mean of the process. Therefore Ẑ(x) is unbiased iff
∑N

i=1wi = 1. It is said that

Ẑ(x) is the Best Linear Unbiased Predictor (BLUP) if the weights wi are chosen to minimize
variance of the error Ẑ(x)− Z(x). Now (since

∑N
i=1wi = 1)

Var(Ẑ(x)− Z(x)) = Var

[
N∑
i=1

wi(Z(xi)− Z(x))

]
,

and

Cov(Z(xi)−Z(x), Z(xj)−Z(x) = Cov(Z(xi), Z(xj))−Cov(Z(x), Z(xi))−Cov(Z(x), Z(xj))+c(0).

Moreover
Cov(Z(xi), Z(xj)) = c(0)− γ(xi − xj) = c0 − Γij .

In matrix form we can write this as

Var(Ẑ(x)− Z(x)) = −w′Γw + 2g′w,

where Γij = γ(xi − xj) and gi = γ(x− xi). The BLUP is solution of the problem

min
w
−w′Γw + 2g′w subject to

N∑
i=1

wi = 1.

By using method of Lagrange multipliers this can be written as the following system of N + 1
linear equations

γ(x1 − x1) · · · γ(x1 − xN ) 1
· · · · · · · · ·

γ(xN − x1) · · · γ(xN − xN ) 1
1 · · · 1 0



w1

· · ·
wN
λ

 =


γ(x− x1)
· · ·

γ(x− xN )
1


with N + 1 unknowns w1, ..., wN , λ.
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It is said that the model is isotropic if γ(h) is a function of ‖h‖. In that case the semivar-
iogram γ(h) becomes a function of one dimensional variable h = ‖h‖. The following are some
popular parametric models of semivariograms.

Linear γ(0) = 0 and γ(h) = c0 + bh for h > 0, where c0 ≥ 0 and b > 0 are parameters. This
model is valid for any dimension d. Note that here limh↓0 γ(h) = c0 with c0 could be strictly
positive. Value limh↓0 γ(h) is called the nugget effect.

Exponential model γ(0) = 0 and γ(h) = c0 + c`(1− e−h/a`) for h > 0, where c0 ≥ 0, c` > 0
and a` > 0. This model is valid for any dimension d.

Note that both models have nugget c0, and in the linear model the semivariogram is un-
bounded, while in the exponential model the semivariogram is bounded by c0 + c`.

Positive-definite functions. Recall that for complex number c = a + bi its conjugate
c̄ = a− bi, where i2 = −1. A function φ : Rn → C is positive-definite if φ(−x) = φ(x) and
for any x1, ...,xm ∈ Rn and c1, ..., cm ∈ C it follows that

m∑
k,`=1

ck c̄`φ(xk − x`) ≥ 0.

This means that the corresponding m × m matrix Γ with components γk` = φ(xk −
x`) is Hermitian10. If φ(x) is real valued, then the corresponding matrix Γ is positive
semidefinite. For m = 1 and c1 = 1 it follows that φ(x1 − x1) ≥ 0, i.e., φ(0) ≥ 0. Also
|φ(x)| ≤ φ(0).

Recall that eiθ = cos θ+ i sin θ. Consider Fourier transform of finite positive Borel measure
µ on Rn

µ̂(z) =

∫
Rn
e−iz

′xdµ(x), z ∈ Rn.

If dµ(x) = f(x)dx, then

µ̂(z) =

∫
Rn
e−iz

′xf(x)dx,

is the Fourier transform of function f . Note that measure µ is positive if f(x) ≥ 0 for all
x ∈ Rn.

For any z1, ...,zm ∈ Rn and c1, ..., cm ∈ C we have

m∑
k,`=1

ck c̄`µ̂(zk − z`) =

m∑
k,`=1

ck c̄`

∫
Rn
e−i(zk−z`)

′xdµ(x) =

∫
Rn

m∑
k,`=1

ck c̄`e
−i(zk−z`)′xdµ(x) =

∫
Rn

(
m∑
k=1

cke
−iz′kx

)(
m∑
`=1

c`e
−iz′jx

)
dµ(x) =

∫
Rn

∣∣∣∣∣
m∑
k=1

cke
−iz′kx

∣∣∣∣∣
2

dµ(x) ≥ 0.

That is, Fourier transform of a finite positive Borel measure is a positive definite function.
The converse of that is also true (its proof is not trivial).

Theorem 26.1 (Bochner) If φ : Rn → C is positive definite, continuous, and satisfies
φ(0) = 1, then there is Borel probability measure µ on Rn such that φ is Fourier transform
of µ.

10A matrix A = [ak`] is said to be Hermitian if ak` = āk` and
∑m
k,`=1 ak`xkx̄` ≥ 0 for any x1, ..., xm ∈ C.
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